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Abstract—The Vertica SQL Query Optimizer was written from
the ground up for the Vertica Analytic Database. Its design
and the tradeoffs we encountered during its implementation
argue that the full power of novel database systems can only
be realized with a carefully crafted custom Query Optimizer
written specifically for the system in which it operates.

I. INTRODUCTION

The Vertica Analytic Database (Vertica) [20] is a modern,
commercially successful RDBMS. It contains a SQL query
optimizer, written from scratch purposely for the Vertica
Storage System and Execution Engine. We purposely chose
to write our own optimizer despite a countervailing trend in
the industry to reuse or wrap existing optimizers [7], [25] in
new database systems.

The choice to write an optimizer from scratch was not taken
lightly and it delayed our product’s initial introduction to the
market. However, as the authors of the C-Store[22] system
envisioned, writing a custom optimizer was the only way to
take full advantage of Vertica’s columnar storage system and
distributed execution engine. We believe our experience and
success in the marketplace validated our decision. Further-
more, we believe choices made while implementing our query
optimizer makes it unique among other products on the market,
though this belief cannot be empirically evaluated given the
scant literature on other industrial optimizers currently avail-
able.

This paper describes the Vertica SQL Query Optimizer (Ver-
tica Optimizer) and some of the optimizations and techniques
it employs. While none of these techniques individually are
new to the research community, we hope that by enumerating
the combination we found useful in practice for our distributed
column store optimized for analytic workloads, we can help
guide future efforts and validate past work. The Vertica
Optimizer is covered by granted U.S. patents 8,086,598 and
8,214,352 as well as several additional pending applications.

The main contributions of this paper are:
1) Argue that a query optimizer should be built for the

system in which it resides rather than reused from a

system with a different set of constraints.
2) Describe the structure and implementation of a modern,

industrial SQL query optimizer.
3) Describe the rationale and customer experience that

influenced our design and should be considered in future
research.

The rest of this paper is organized as follows: Section II
reviews Vertica Data Model, and summarizes what a query
optimizer is, and describes how our experience with earlier
query optimizers at Vertica informed the design of the op-
timizer described in this paper. Section III briefly describes
the possible plans which our system can execute and thus the
optimizer must choose from. Section IV describes the imple-
mentation of our optimizer, Section V presents experimental
evaluation and Section VI summarizes related work.

II. BACKGROUND

In this section, we firstly sumarize data model of Vertica,
focusing on how data is physically stored. The full details of
Vertica Data Model are covered in [20]. We then review the
general tasks of a query optimizer to highlight portions that
can be highly customized to specific RDBMS such as Vertica.

A. Vertica Data Model

Like all SQL based systems, Vertica models user data as
tables of columns (attributes), though the data is not physically
arranged in this manner. Vertica supports the full range of
standard INSERT, UPDATE, DELETE constructs for logically
inserting and modifying data as well as a bulk loader and full
SQL support for querying.

Projections and Super Projection: Vertica physically or-
ganizes table data into projections, which are sorted subsets
of the attributes of a table. Any number of projections with
different sort orders and subsets of the table columns are
allowed. Because Vertica is a column store and has been
optimized so heavily for performance, it is NOT required
to have one projection for each predicate that a user might
restrict. In practice, most customers have one super projection,



which contains all columns of the anchor table, and between
zero and three narrow, non-super projections.

Each projection has a specific sort order on which the data
is totally sorted as shown in Figure 1. Projections may be
thought of as a restricted form of materialized view [4], [27].
They differ from standard materialized views because they are
the only physical data structure in Vertica, rather than auxiliary
indexes.
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Fig. 1. Relationship between tables and projections. The sales ta-
bles has 2 projections: (1) A super projection, sorted by date, segmented
by HASH(sale id) and (2) A non-super projection containing only
(cust, price) attributes, sorted by cust, segmented by HASH(cust).

Prejoin Projections: Vertica supports prejoin projections
which permit joining the projection’s anchor table with any
number of dimension tables via N:1 joins. This permits a nor-
malized logical schema, while allowing the physical storage to
be denormalized. The cost of storing physically denormalized
data is much less than in traditional systems because of the
available encoding and compression.

Encoding and Compression: Each column in each projec-
tion has a specific encoding scheme. Different columns in a
projection may have different encodings, and the same column
may have a different encoding in each projection in which
it appears. The same encoding schemes in Vertica are often
far more effective than in other systems because of Vertica’s

sorted physical storage.
Encoding Types:

1) Auto: The system automatically picks the most ad-
vantageous encoding type based on properties of the
data itself. This type is the default and is used when
insufficient usage examples are known.

2) RLE: Replaces sequences of identical values with a
single pair that contains the value and number of oc-
currences. This type is best for low cardinality columns
that are sorted.

3) Delta Value: Data is recorded as a difference from the
smallest value in a data block. This type is best used for
many-valued, unsorted integer or integer-based columns.

4) Block Dictionary: Within a data block, distinct column
values are stored in a dictionary and actual values are
replaced with references to the dictionary. This type is
best for few-valued, unsorted columns such as stock
prices.

5) Compressed Delta Range: Stores each value as a delta
from the previous one. This type is ideal for many-
valued float columns that are either sorted or confined
to a range.

6) Compressed Common Delta: Builds a dictionary of all
the deltas in the block and then stores indexes into the
dictionary using entropy coding. This type is best for
sorted data with predictable sequences and occasional
sequence breaks. For example, timestamps recorded at
periodic intervals or primary keys.

Partitioning and Segmentation: We use partitioning and
segmentattion to represent the intra-node and inter-node hori-
zontal partitionings respectively.

1) Partitioning: Vertica provides a way to keep data seg-
regated in physical structures in a single node based on
value through a simple syntax:
CREATE TABLE ... PARTITION BY <expr>.
This instructs Vertica to maintain physical storage so
that all tuples within a storage container evaluate to the
same distinct value of the partition expression. Partition
expressions are most often date related such as extracting
the month and year from a timestamp.

2) Segmentation - Cluster Distribution: Segmentation is
a way to split tuples among nodes. Unlike partitioning,
which is specified at table level, segmentation is speci-
fied for each projection, which can be (and most often)
different from the sort order. Projection segmentation
provides a deterministic mapping of tuple value to node
and thus enables many important optimizations. For ex-
ample, Vertica uses segmentation to perform fully local
distributed joins and efficient distributed aggregations,
which is particularly effective for the computation of
high-cardinality distinct aggregates.
Projections can either be replicated or segmented on
some or all cluster nodes. As the name implies, a
replicated projection stores a copy of each tuple on
every projection node. Segmented projections store



each tuple on exactly one specific projection node.
The node on which the tuple is stored is determined
by a segmentation clause in the projection defini-
tion: CREATE PROJECTION ... SEGMENTED BY
<expr> where <expr> is an arbitrary 1 integral ex-
pression.

B. Query Optimizer

In this section, we review the typical tasks of a query
optimizer in a relational database system in order to highlight
portions which can potentially be reused and which portions
must be highly customized to the RDBMS in which they run.
We refer readers to one of the many excellent query processing
surveys such as [5] for more detail.

In contrast to procedural programming and data manage-
ment systems such as MapReduce[9], users pose queries to
an RDBMS using the declarative SQL language. The query
specifies what the user wants computed, not how it is to be
computed. It is the optimizer’s job to translate the user request
into a specific set of computation instructions that answers
their query in the most efficient manner given the system’s
available data structures and algorithms. The abstraction bar-
rier between query declaration and its execution imposed by a
declarative query language significantly improves application
developer productivity and application portability amongst
RDBM systems. In the following list, we enumerate the
choices an optimizer must make and also highlight how tightly
coupled they are to the execution and storage system.

Query Transformations. There are well known query
transformations and simplifications which are (almost) always
beneficial regardless of RDBMS system and thus are typically
always applied. Example transformations include OUTER to
INNER join conversions[11], and pushing predicates into sub-
query blocks. These transformations are applicable regardless
of the RDBMS storage and execution architecture because they
can be implemented as SQL rewrites and tend to reduce the
size of intermediate results flowing within the query.

Join Order Selection. As joins are often used for filtering
and their selectivity varies dramatically, the choice of in which
order to perform them is critical to performance. The right join
order is often the difference in a plan that takes a few seconds
and a plan which for all practical purposes will never finish.
The optimizer is also often constrained in join order choice by
the semantics of SQL, available algorithms and quirks of the
execution engine and storage layer. Some parts of join order
selection such as ordering based on selectivity are not greatly
influenced by the overall RDBMS system. Other parts of the
join order selection are very specific to the RDBMS such as
tracking intermediate distribution across clusters of machines,
the importance of sortedness, and information to enable late
materialization [3]. Most optimizers choose a join order using
a guided search based on heuristics which are tightly coupled
and highly tuned to the runtime constraints of their particular

1While it is possible to manually specify segmentation, most users let
the Database Designer determine an appropriate segmentation expression for
projections.

RDBMS. It is unlikely that such heuristics can be easily reused
across different systems.

Physical Structure Selection. The optimizer determines
which data structure the execution engine should use when
searching for the rows required to answer the query. This
choice involves tradeoffs based on how effective particular
structures when evaluating certain types filters, the I/O cost
to fetch the structures from disk, the CPU required to use
such structure, and implications for other operators later in
the query plan. Physical structure selection is almost entirely
dependent on the structures available in the data-base system,
and the algorithms to choose them must be tightly coupled
with the physical system. For example, traditional RDBMS
systems must choose between a variety of secondary index
structures, whereas the Vertica Optimizer simply chooses
which projection2 to use.

Operator Algorithm Selection. The optimizer also deter-
mines which execution algorithm to use from those supported
by the RDBMS execution engine. The choice of algorithms has
a dramatic effect on performance and is constrained by various
requirements of the implementation. For example, choosing
between a Hash-Join, a Sort-Merge-Join, and a Merge-Join at
minimum depends on estimating the sizes of inputs, the cost of
sorting input(s), and if the data is already sorted. This choice
is highly dependent on the operators available in the execution
engine and thus the algorithms to choose between the various
operators are not easily reused between systems.

Mechanical Translation. In order to actually produce the
results requested by a particular query, the optimizer builds
an explicit set of instructions, often called a query plan for
the execution engine. This plan contains numerous explicit
details such as what predicates to evaluate where, what form
the intermediate data flowing through the plan looks like, and
many other largely mechanical (but critical) details. This part
of a query optimizer must, by necessity, be tightly coupled to
the representation of the plan in the system in which it will
be run.

Of the preceding list of optimizer tasks, only query transfor-
mations are general enough to be significantly reused across
different database systems. Some have argued that much of
the join order enumeration may also be reused. However,
our experience, as described in Section II-C, was that join
order enumeration is highly specialized and led us to write the
Vertica Optimizer from scratch using customized algorithms
for the choice of physical structure, join order, and operator
algorithms available within the Vertica Analytic Database.

C. Design History

The C-Store research prototype did not contain a query
optimizer implementation, but the design called for a Selinger-
style[24] optimizer that used cost-based estimation for plan
construction. The C-Store authors noted that their optimizer
would need to be aware of compression and its effects on the
CPU and I/O cost of database operations, and they listed the

2projection is defined in section III-A



major optimizer decisions as 1) which projections to use for a
given query, 2) how to prune the plan search space to a feasible
size, and 3) at what points in the plan they should materialize
columns. The Vertica Query Optimizer addresses all of these
decisions and many more, but the final design did not spring
forth fully formed on our first attempt. The Query Optimizer
used in Vertica is actually our third version, and the history
of how we arrived at the current design highlights some the
challenges faced by industrial optimizer implementers.

StarOpt. The initial Vertica Optimizer was Kimball-style
query optimizer[19] that assumed any interesting customer
schema and query could be modeled as a star or snowflake.
When this design assumption met the real world, it became
clear that most customer data did not exactly conform to the
star ideal. For a variety of technical and non-technical reasons
we couldn’t expect customers to change their schemas, so
we needed a different optimizer with a different set of as-
sumptions. StarOpt also applied distribution and sort-algorithm
decisions after the join order had been chosen, which signifi-
cantly affected its ability to minimize data movement for com-
plex plans running against complicated distributed schemas.
As we learned, an industrial optimizer must handle all the
vagaries of messy schemas and data however nonsensical they
may seem to the implementors.

StarifiedOpt. The second generation optimizer was a mod-
ication to StarOpt which internally forced non-star queries to
look like a star solely for the purpose of applying the existing
StarOpt algorithms. This approach was far more effective for
non-star queries than we could have reasonably hoped, and it
bought us sufficient time to design and implement the third
generation optimizer: the custom built, but poorly named,
V2Opt.

V2Opt. When we refer to the Vertica Query Optimizer
in the rest of this paper, we are referring to V2Opt. This
optimizer, designed in collaboration with Mitch Cherniak
at Brandeis University, is completely aware of distribution,
sortedness, and non-star schemas in all its decisions. It has
been the default Vertica Optimizer since version Vertica 4.0
and has served us well at thousands of customer installations
and planned hundreds of millions of queries.

Another specific example of a significant optimizer change
between StarOpt and V2Opt directly driven by our experiences
is that V2Opt does not specify the order in which to apply
predicates during a projection column scan operation. Instead,
the predicate evaluation order is left to the execution engine as
the most efficient order is often dependent on conditions not
known at plan time. We found that choosing the obvious pred-
icate evaluation order of decreasing selectivity was sometimes
far from optimal due to compression and clustering effects in
our storage system. The execution engine was in a much better
position to change the predicate evaluation order dynamically
and in retrospect moving where this decision was made had a
significantly positive impact on our query plans.

III. QUERY PLAN SEARCH SPACE

A. System Review

This section reiterates some material from the detailed
system description of the Vertica Analytic Database [20] which
are relevant to the choices the Vertica Optimizer makes.

Vertica physically organizes table data into projections,
which are sorted subsets of the attributes of a table. Any
number of projections with different sort orders and subsets
of the table columns are allowed. Each projection has a
specific sort order on which the data is totally sorted and
the system maintains this sortedness through the tenure of the
data within the system. Each column in each projection has a
specific encoding scheme. Different columns in a projection
may have different encodings, and the same column may
have a different encoding in each projection in which it
appears. Vertica’s distributed storage system assigns tuples
to specific nodes via a horizontal partitioning scheme called
segmentation. Segmentation is specified individually for each
projection, and the scheme we use provides a deterministic
mapping of tuple value to node, thus enabling many important
distributed optimizations.

Vertica’s execution engine provides operators which per-
form the actual computation on user data. The execution
engine provides several different algorithmic implementations
of the same logical operation such as Merge Join and Hash
Join algorithms. Merge Join is faster and requires less memory
if the input is pre-sorted, but Hash Join can be used regard-
less of the incoming data’s sortedness. Operators also have
specializations to operate directly on encoded data, which is
especially important for scans, joins and certain low level
aggregation operations.

1) Supported SQL Constructs: The Vertica Optimizer im-
plements the SQL-99[16] specification along with portions
of SQL-2003[17] which our customers have found useful.
We next list some of SQL features that Vertica supports
to illustrate the breadth and depth of features needed for a
commercial analytic database product at the time of writing.
Since the order in which we implemented SQL functionality
was driven entirely by customer demand, we have ordered the
following list in approximate implementation order to give
readers an idea of the relative importance of certain features
to our customers.

1) Expressions and Filtering for the full range of SQL
predicates, functions, date manipulations, string manip-
ulations, regular expressions, and user defined functions.

2) Aggregation and aggregations of distinct values. Vertica
supports all SQL-99 aggregate functions, plus DIS-
TINCT and multiple DISTINCT aggregates and full
HAVING clause support.

3) Set Operations such as UNION, UNION ALL, INTER-
SECT, EXCEPT.

4) Basic Joins, implemented in decreasing order of use-
fulness: INNER JOIN, LEFT OUTER JOIN, single
and multi column equality predicates, ON clause pred-
icates and their subtly different semantics compared to



WHERE clause predicates, and specialized range join
predicates.

5) Basic Subqueries used as table expressions and corre-
lated predicates in the FROM and WHERE clause.

6) Advanced Joins such as RIGHT OUTER JOIN, FULL
OUTER JOIN, SEMI and ANTI joins (introduced via
subquery rewrites), multi-column variations of ANTI
joins, along with subqueries correlated via non-equality
predicates.

7) SQL-99 Analytic Functions, including moving win-
dows. Vertica also supports several custom SQL ex-
tensions designed for analytics such as event series
joins designed for timeseries analysis, pattern matching
across rows within a partition via regular expression, and
timeseries normalization functionality.

8) Advanced Subqueries correlated and non-correlated
subqueries in the HAVING clause, under OR predicates,
NOT IN, used as scalar values and other esoteric func-
tions.

2) Optimizer Plan Space: We are now in the position to
describe the theoretical set of possible plans that can be chosen
by the Vertica Optimizer. The optimizer does not fully search
this space, and the mechanism to restrict the search and choose
a plan is described in the following section.

• Table Access. The optimizer must choose exactly one
projection that contains all columns required for each
table referenced in the query. As there is no such thing as
an index in Vertica, the only choice is which projection
to use with the execution engine’s highly optimized and
tuned column “scan” operation.

• Join Order. The optimizer may perform the table joins
in the query in any order as long as that order returns the
same result as would the query as phrased by the user.
The Vertica Optimizer does not limit its search space to
so called left-deep plans like the System-R[24] optimizer
– it can and does consider so-called bushy plans.

• Algorithms. Each plan operation may be executed with
one of several different algorithms. There is typically
a sort based algorithm, and a hash based algorithm
available to choose between. Due to the lack of auxiliary
indexes, the choice of algorithm in Vertica is compara-
tively smaller than in other systems as we do not consider
index-assisted algorithms such as index-nested-loops join.

• Column Materialization. Because Vertica is a native
column store, columns from projections may be fetched
on demand at various stages during plan execution at
no additional runtime cost. The Vertica Optimizer must
account for this optimization as a first class citizen during
the join enumeration and pruning as it has dramatic
effects on the overall plan’s performance.

• Redistribution. The optimizer must specify where in the
plan to resegment (redistribute data according to some
new segmentation scheme) or broadcast (ensure that all
nodes get a copy) data. Some redistribution operations
must be done for correctness and some redistribution

operations may be done to improve performance.
• Predicate Placement. A predicate may be specified

as part of a scan operation, or applied as a separate
subsequent filtering step. The optimizer chooses where
to place the predicate in the plan to ensure correctness
as well as optimal performance. The optimizer also must
place synthetic predicates such as sideways information
passing predicates [26].

Note that we include column materialization as part of
our plan space, unlike other typical optimizer search space
descriptions. This is because the Vertica Analytic Database is
a native column store and late materialization is critical for
performance. Typically, native row stores (even those which
have retrofitted columnar storage) treat optimizations which
are the most similar to late materialization as special cases
of some indexed join types. It is hard to account for such
cases in core join order enumeration algorithms, given the
already inherent complexity, unless those cases are as core
to the system architecture as materialization is to Vertica.
Similarly, Data redistribution, like column materialization, is
a core architectural feature of the Vertica Analytic Database,
and thus must be at the core of the Vertica Optimizer’s
choices. We believe that retrofitting distribution choices into
an algorithm originally designed to create serial plans is
inherently inferior to building an optimizer’s core algorithms
around such choices. Both of these points further argue the
case for purpose built optimizers.

IV. THE VERTICA QUERY OPTIMIZER

Fig. 2. Query plan creation within the Vertica Query Optimizer.

Figure 2 shows a block diagram depiction of how the Vertica
Optimizer creates an execution plan. The tasks within each
box of the figure are discussed in more detail in the following
sections

A. Inputs

The input to the Vertica Optimizer is an SQL query and op-
tional statistical summaries of the tables and available projec-
tions. These inputs are similar to other academic and industrial
query optimizers and we highlight them only briefly below.
Vertica uses the parser and semantic analysis engine from the
PostgreSQL[1] system to verify the syntax and semantics of
the query. We did not write a custom SQL parser because
SQL is a standard language, and thus no value is created
by writing a custom parser.3 The Vertica Analytic Database

3Custom parsers also invariably create slightly incompatible dialects of SQL
which is bad for application developers.



provides the optimizer with the full set of standard state of the
art data statistics such as automatically maintained row count,
minimum and maximum values for each table column, and
equi height per column histograms with both value count and
distinct value count for each histogram bucket.4 The statistics
also contain physical characteristics for each column in each
projection such as total size on disk and number of disk pages.

B. Join Graph

In the Vertica Optimizer, the parsed Query* tree from
the PostgreSQL parser is first transformed into an equivalent
structure called a Join Graph similar to the one described in
Starburst[14]. A Join Graph does not represent or store any
planning decisions (e.g. Merge Join vs Hash Join), rather it
conveniently represents the parsed query with quick access to
important relationships. Join Graphs are more convenient to
manipulate than the raw Query*for two reasons: 1) Many
of our algorithms are more natural to express as walks over
graphs and 2) The Query* is a C structure and Join Graphs
is a C++ class.

SELECT A.a1, A.a2, C.c, D.d, SUM(B.b)
FROM A, B, C, D
WHERE A.x = B.x AND B.y = C.y AND B.z = D.z

AND A.a1 = 100 AND C.c LIKE ‘Spring’
GROUP BY A.a1, A.a2, C.c, D.d;

Fig. 3. Query 1: 4 Tables, 3 Joins

Fig. 4. Join Graph 1, representing Query 1 in Figure 3

The nodes in a Join Graph represent the relations in the
FROM clause of an SQL query, typically tables or subqueries.
An edge between nodes in a Join Graph represents joins
between two tables. Both nodes and edges store properties
about the relation and join respectively. Figure 4 illustrates
the Join Graph of the query from Figure 3. There are four
vertices, one for each of the four tables A, B, C, and D in
the FROM clause. The three edges represent the three joins,
A.x = B.x, B.y = C.y and B.z = D.z respectively.
The single column selection predicates A.a1 = 100 and
C.c LIKE ‘%Spring%’ are stored on the vertices. Be-
cause Vertica is a native column store, our Join Graph also
stores information for column store specific optimizations such
as late materialization. One example of such information is
the list of attributes required for computing quantities after
all joins. Example properties stored on edges are the type
of join (e.g. INNER, OUTER, SEMI) being performed and

4We use the Smoothed Jackknife algorithm [15] to estimate the distinct
value count with a maximum of 100 buckets.

if the join is along a Foreign Key - Primary Key relationship.
Information such as the SELECT list (A.a1, A.a2, C.c,
D.d, SUM(B.b)) and the GROUP BY list (A.a1, A.a2,
C.c, D.d) are stored as Join Graph wide properties.

SELECT A.a
FROM A
WHERE A.x IN (SELECT B.x

FROM B, C
WHERE B.y = C.y
AND C.c LIKE ‘Spring’);

Fig. 5. Query 2, with Subquery

Fig. 6. Join Graph for Query 2 in Figure 5

Subqueries are represented as a vertex in a Join Graph
with a pointer to another Join Graph instance representing
the sub query block, as illustrated in Figure 6 for the query
in Figure 5. Similarly to subqueries, the Join Graph also
represents restrictions on join orderings required to maintain
semantic equality using special node types. This is necessary,
for example, because it is not possible to arbitrarily reorder
certain combination of INNER and LEFT OUTER joins. A
full description of our restriction representation is outside
the scope of this paper, but we highly encourage any reader
who wishes to create an industrial optimizer to study research
literature such as [23].

C. Rewriter

As previously mentioned, the raw SQL query is parsed
and semantically analyzed by code derived from the Post-
greSQL system. The Rewriter step applies a series of query-
level transformations to produce a query which is simpler
and easier for later stages to optimize. The first type of
Rewriter transformations are the standard SQL transformations
from PostgreSQL such as OUTER JOIN to INNER JOIN
conversion, predicate push down into subqueries, and unnest-
ing subquery blocks when possible. We have significantly
extended these transformation passes as customer needs have
arisen, and we are able to quickly incorporate newly added
transformations from the PostgreSQL codebase. The second
type of SQL transformations done by the Rewriter are those
which we found to be relevant to customer queries and did not
have suitable implementations in Postgres such as subquery
and view de-correlation and flattening [18], adding transitive
predicates based on join keys, and pushing grouping and top-
K filtering into subqueries and sub portions of the plan. The
output of this chain of components is a Join Graph structure,
as described in Section IV-B, which is ready to be optimized.



For implementation expedience, we initially assumed that
fully general, restartable query blocks for correlated sub-
queries were not important to support within the context
of a distributed analytic database. We instead focused on
automatically rewriting all subqueries into joins instead. Our
experience in the market has validated this initial assumption:
it is very rare to encounter a customer query with subqueries
which can not be automatically flattened into SEMI JOIN
or ANTI JOIN 5. Due to the distributed architecture within
which it is running, the Vertica Optimizer has a much larger
library of subquery to join transformations than systems which
treat such rewrites as an optimization. This is an example of
a design choice made in for the Vertica Optimizer directly
driven by the system for which it was written.

D. Projection Set Chooser

The input of the Projection Set Chooser is a Join Graph
and the list of projections which are available for query
processing. The output is a compact representation of one or
more candidate Projection Sets. A Projection Set specifies, for
each table node in the JoinGraph, which projection should
be used to fetch the data for that particular table. Only
projections that cover the table (i.e., contain all the table’s
columns used in the query) are eligible. The total space of
candidate Projection Sets consists of all possible combinations
of covering projections for the tables in the query, and it is the
job of the Projection Set Chooser to produce candidates which
are not provably suboptimal. For example, if a projection P1

has the same sort order and segmentation as projection P2, but
is more expensive to scan because of different encoding types,
then any projection set containing P1 can be eliminated. The
intuition for elimination is that the same projection set with
P2 substituted for P1 will be better for all queries and thus P1

can be safely excluded without missing an optimal plan. The
Projection Set Chooser also performs two other operations of
note.

First, it determines how to access each table’s data when
some cluster nodes have failed and their data is not accessible.
Because this information is encoded into the Projection Set,
the rest of the Vertica Optimizer’s algorithms are aware of and
influenced by the potential change of distribution, sort and cost
when nodes are down in the cluster.

Fig. 7. Prejoin Rewrite. The nodes and edge representing selecting from
tables A and B and the join between them is replaced with a single new node
representing a prejoin projection.

Secondly, the Projection Set Chooser performs prejoin
rewriting. A prejoin projection contains multiple tables joined

5Our SEMI JOIN and ANTI JOIN implementations include several vari-
ants which are necessary for full semantically equivalent rewrites.

via a foreign key - primary key relationship during data load.
If a prejoin projection could be used in place of actually
performing one or more joins during query execution, the
Projection Set Chooser will create a new Join Graph for
possible optimization by rewriting the input Join Graph. For
example, Figure 7(a) shows a Join Graph of a query that joins 4
tables, A, B, C, and D, and Figure 7(b) illustrates the new Join
Graph which is constructed after rewriting the join between B
and C with a prejoin projection.

E. Join Order Enumerator

Fig. 8. Join Order Enumeration via Join Ranking, described in section IV-E

The Join Order Enumerator heuristically explores potential
join orderings using a bottom-up enumeration algorithm based
on ranking joins using a Join Ranker, as described in Section
IV-E1. The Join Order Enumerator algorithm is a work list
algorithm that operates on partial plans called In Progress Join
Orders (IPJOs). Each IPJO represents a partial execution plan
with one or more joins not yet performed. The Join Order
Enumerator proceeds as follows:

1) Initialize the worklist with a single IPJO for each
Covering Projection Set

2) While the worklist is not empty, choose the next least
complete IPJO from the worklist

a) If the IPJO is complete, add it to the output
b) Otherwise, rank all joins not yet completed in that

IPJO (note that the rankings of the same join can
and will be different in different IPJOs)

c) Determine the minimum rank value R of any join
d) For each join J with the rank value of R

i) Choose potential join methods for J
ii) Form new IPJOs for each join method

iii) Add the newly created IPJOs to the worklist
3) Remove non-interesting items from the worklist using

the Join Pruning algorithm described in Section IV-E2.



4) The output of the Join Order Enumerator is a set of
complete plans. The optimizer chooses the plan with the
lowest estimated cost using the cost model described in
Section IV-F.

Figure 8 illustrates the join enumeration algorithm. Figure
8(a) illustrates the initial IPJO0 for a query with four tables,
A, B, C, and D 6. The IPJO0 has no partial plan, and each
remaining join is annotated with its rank, in this case 1, 2, or
3. The numerical join ranks were determined by a Join Ranker,
described in section IV-E1, using query attributes not shown
in this example. The join between A and B has the smallest
rank, 1. IPJO1 is formed in the next step by joining A with
B to form the partial plan shown in Figure 8(b). As the join
between A and B has different properties than either the tables
A or B individually, the ranks of the two remaining joins in
IPJO1 are different than their ranks in IPJO0. In this case
they are both assigned the rank 3 and thus are both considered
as candidates as the next possible join to perform. Exploring
both of these possibilities creates the two new IPOJs, IPJO2

and IPJO3 shown in Figure 8(c). IPJO2 and IPJO3 each
have only a single join remaining, which results in the two
final join orders IPJO4 and IPJO5 shown in 8(d).

1) Join Ranking: The Join Ranker encapsulates the heuris-
tics used to explore the join order search space via a numerical
rank for each remaining join in an In Progress Join Order
(IPJO). For any join with a particular rank value, the join
will be performed after all joins with lower rank values and
before all joins with higher rank values. The Join Ranking
system allows our Optimizer to find good join orders without
exploring the entire plan space. Our code is structured to
accept a Join Ranker which satisfies the following interface:
• Input: A single IPJO, comprised of: 1) a Join Graph,

2) a Covering Projection Set, 3) a partial plan which
joins some of the tables in a particular order and method,
and 4) a list of remaining joins which have not yet been
performed.

• Output: A mapping of remaining join to an integral rank.
Any particular rank value is definitively better or worse
than any other rank (the ranks form a total order), but
multiple joins can be assigned the same rank.

It is possible to use different Join Rankers with the Vertica
Optimizer to change the join order search space the optimizer
explores. In reality, we have one Join Ranker which is used to
plan all customer queries, and the primary benefit to splitting
the Join Ranker from the Join Order Enumerator is a clean sep-
aration between software modules which allowed decoupled
development, testing and validation of the components. Our
production Join Ranker ranks joins based on various physical
properties of the partial results being joined such as:
• Selectivity What percent of the data will be eliminated

after going through the join?
• Cardinality What is the relative estimated size of the

join inputs?

6While the actual enumeration algorithm runs in terms of projections, we
use tables in our example for expository simplicity.

• Co-location Are the two inputs segmented such that a
join can be performed without redistributing the interme-
diate results?

• Sortedness Is the input data sorted in advantageous
ways such as allowing merge join or upstream pipelined
grouping?

• Constraints Are there any applicable schema constraints
(e.g. Primary Keys)?

Further details of the Join Ranking formula, its inputs,
and how we pick between the possible join methods such as
algorithm (e.g. Hash or Merge) and input order (e.g. which
table to hash and which to probe) are beyond the scope of
this paper. Such details are not intellectually interesting but
do represent some of the hard won knowledge required to
build a practical and successful industrial optimizer.

2) Join Pruning: As the Join Order Enumerator explores
the join order search space, it periodically applies a Join
Pruning algorithm to the elements in the work list:

1) Group IPJOs together which represent the same partial
results and the same joins remaining to perform.

2) Within each group, keep only those IPJOs which have
the lowest estimated cost for some particular Interesting
Property and discard the rest.

The Vertica Optimizer defines Interesting Properties for
each column or set of columns which might allow cheaper
operations upstream (such as group by or join columns).
Interesting properties exist for several dimensions such as sort-
edness and segmentation. This pruning strategy is an extension
of the System R[24] approach of keeping only access paths
which have “Interesting Orders” because interesting properties
include not just sortedness but cluster distribution and other
Vertica specific properties. The inclusion of distribution in-
formation during the join enumeration algorithms was a key
design goal of our optimizer and we believe it is another
compelling reason for writing a custom optimizer.

Taken together, the Join Ranker and Join Pruning algorithms
encode the heuristics used to limit the query plan search space.
Like all heuristics, they are not perfect and in pessimal cases
may not reduce the search space to a feasible size. In order to
prevent run away planning time, the Vertica Optimizer imposes
a fixed size on the memory it devotes to storing intermediate
results. If this cap is hit, the optimizer goes into a hurry up
mode where only the single best partial plan is kept at each
stage. Of course hurry up mode sacrifices potentially optimal
plans, but it provides two nice features: 1) Testability (the
search space considered is simply a function of query and
physical design, not of the power of the system running the
optimizer, and 2) a simple way to avoid resource explosion
(in addition to the time explosion) when our heuristics are not
limiting the space sufficiently.

F. Cost Model

When exploring the plan space, the optimizer needs a way
to compare different plans and eliminate sub-optimal plans.
The ultimate goal is to find the plan with minimum run
time, but it is notoriously hard to estimate the actual run



time of a query plan due to the sheer number of factors
that affect query execution. Furthermore, we placed significant
value on predictable behavior to improve the user experience.
Thus, rather than building a complex model that attempted to
predict query run-times directly, we chose to model predicted
data flow through the plan. We heuristically assume that
minimizing the data flow through the plan is a good proxy
for minimizing the query execution time and it seems to work
well in practice.

The advantages of a data flow based cost model are:
• Simplicity In production environments, debuggability

and predictability are very important features. Having a
cost model that is easy to reason about is often more
important than one which captures many nuances.

• Robustness Modern hardware architectures have many
sophisticated features that affect query run times, such
as non-uniform memory access, pipelining, and hyper-
threading. Furthermore, variables such as Disk I/O per-
formance, network bandwidth and latency, and CPU
significantly affect query performance but vary widely
both across deployment environments and over time in
a particular environment. By modeling these variables
via the amount of data processed, our cost model is
less sensitive to changes in the deployment environment
resulting in more robust behavior.

1) Cost Aspects: The data flowing through an operator/node
in the query plan is classified into one of four categories –
Disk, CPU, Network or Memory termed cost aspects. The
intuition behind distinguishing between different aspects is that
the cost of fetching a certain number of bytes from disk is
different from the cost of processing the same amount of data
in the CPU or sending it over the network. For example, we
model a hash join operator using the following aspects:
• CPU Estimated sizes of outer and inner relations of the

join, since both relations need to be hashed on the join
keys.

• Memory Estimated size of the hash table needed to store
the inner relation.

• Disk Estimated amount of data that will spill to disk.
• Network If the join requires resegmentation or broadcast,

then the amount of data sent over the network.
• Parallelism The number of cluster nodes the join will

execute on.
The distinction between the CPU and memory aspects is

purely for development convenience – data that is being copied
is technically also processed by the CPU, so the Memory and
CPU aspects could be merged. However, keeping them sepa-
rate encourages developers to pay attention to both aspects of
a query operator, reducing the likelihood of some aspect being
missed. The estimated data sizes are computed as the product
of the estimated cardinality (discussed in Section IV-F2) and
the tuple width. Because Vertica is natively a column store,
the tuple width at each operator is often significantly different,
since typically only the columns needed for the operation are
fed to the operator. Using cost aspects we can also model

execution engine operations acting directly on compressed
data, which dramatically affect the disk, memory, and CPU
requirements in a way that a cost model based solely on I/O
or rows processed can not.

2) Cardinality Estimation: Estimating the cardinality (the
number of rows) at intermediate points of a query plan is
needed to calculate the cost aspects, as the number of rows
processed is directly proportional to the number of bytes that
flow through the plan. The optimizer must estimate for what
percentage of rows a given predicate will evaluate to true,
as well as estimating the output cardinality of grouping and
join operations. These calculations are notoriously hard to get
right[5], especially for joins.

The cardinality estimator within the Vertica Optimizer is
based on histograms of table column values. Vertica contains a
partial expression evaluation system, known as ExprAn which
calculates expression range information. Specifically, given an
arbitrary expression and the range of values for each variable
(i.e., column reference) ExprAn gives the tightest possible
minimum and maximum values for the expression’s output.
ExprAn is used by several other subsystems such as the
execution engine which skips fetching entire partitions or disk
blocks when they are guaranteed to hold no row that will
satisfy the predicate.

a
0 500 1000

100

2000

7000

b

Input:
2000 <= b < 7000
0 <= a < 500

Output:
Min = False
Max = False

Input:
2000 <= b < 7000
500 <= a < 1000

Output:
Min = False
Max = False

Input:
100 <= b < 2000
500 <= a < 1000

Output:
Min = False
Max = False

Input:
100 <= b < 2000
0 <= a < 500

Output:
Min = ?
Max = ?

Fig. 9. A hypercube used to estimate the selectivity of a + b <= 100. The
expression evaluates to false for the entire ranges of a and b depicted in the
three white quadrants, and the expression evaluates to either true or false for
the ranges in the lower left hand gray quadrant.

For each predicate, the Vertica Optimizer builds a multi-
dimensional hypercube, where each dimension represents the
value distribution of a specific column referenced in the
expression. For an expression with n column references, the
optimizer builds an n-dimensional hypercube. The value distri-
bution is directly taken from the column histograms described
previously. Figure 9 shows the two-dimensional hypercube –
i.e., a square – built for the expression a+b <= 100. Each cell
in the hypercube corresponds to one bucket from the histogram
of each column reference in the predicate.

A region within the hypercube represents a set of ranges
for each column reference. For example, the upper right
corner of Figure 9 represents the range [500, 1000] for a and
[2000, 7000] for b. Using a divide and conquer technique, the
optimizer explores the regions within the hypercube, using
ExprAn to determine the output range of the predicate. It then



tallies row counts of regions known to be true, regions known
to be false, and regions which could be either, to form a final
estimate of the overall selectivity of the predicate. We use
a similar approach for join predicate selectivity and another
cardinality estimation technique for grouping operations based
on distinct value calculation. Like other industrial optimizers,
we assume column value independence, and column correla-
tion is the most significant source of selectivity estimation
error we see in customer cases. Our estimates are highly
skew tolerant due to the use of equi height histograms which
captures skewed value distributions well.

3) Cost Estimate: We form the overall cost for a plan by
forming the total estimated data movement as follows:

1) Calculate the cost aspects for each operator in the query
plan using a per operator model and input and output
cardinality estimates.

2) Calculate the total cost of each operator as a weighted
combination of the aspects divided by the degree of
parallelism (the number of nodes in the cluster).

3) Calculate the cost of the entire query by summing the
cost of each operator.

Incorporating the degree of parallelism makes the cost of a
plan proportional to the amount of data processed per machine.
This property makes the model invariant to the number of
machines in the database cluster – for example, the cost of a
plan running on 4 nodes is the same as the cost of the plan
running on 8 nodes for the same amount of data per node.
This normalization avoids unwanted plan changes when the
number of nodes in a cluster is scaled up to handle increasing
data sizes.

The specific value of the weights given to the linear
combination of the cost aspects and the cardinality estimates
cannot be changed, tweaked or otherwise tuned by users.
This approach is different than other industrial optimizers[2]
which allow users to fine tune internal weights and measures.
We believe the simplest and most effective way for users to
override the optimizer’s choice of plan is not through indirect
knobs, but rather through direct control of the desired plan
features. We provide users this level of control via a mode
known syntactic optimizer, in which users specify exactly the
join orders and projections they desire via query hints or
session properties. We have found this approach very effective
in the field.

G. Plan Construction

Once the join order, algorithms, and projections have been
chosen, the plan construction phase mechanically creates an
operator-annotated (executable) plan. By mechanical we mean
easy to predict, not devoid of value. The construction phase
includes transformations and operations critical for perfor-
mance and correctness such as local parallelism annotations,
partition elimination, and localized storage optimizations. In
addition, there are several features mechanically added in the
Vertica Optimizer’s plan construction phase which are often
chosen during query optimization via cost model in other
systems. Such operations with Vertica are enabled and disabled

selectively based on actual data flowing through the execution
engine once the plan is running.

One example of the close collaboration between the opti-
mizer and the execution engine is group by pushdown. Group
by push down[6] is an optimization technique that performs
grouping operations before join operations in the hopes of
reducing cardinality of join inputs and thereby reducing query
runtime and resource usage. However, depending on the actual
data and predicates in the query, the pre join grouping oper-
ation may actually cost more in resources than is gained by
reduction in cardinality. Rather than attempting to distinguish
between these two cases at plan time, The Vertica Optimizer
always places specially annotated grouping operations below
joins when it is correct to do so. At run time, the execution
engine evaluates the actual effectiveness of ongoing grouping
operations, and disables the grouping when its cost is not
justified by its current benefits. Other examples of Optimizer
and Execution Engine collaboration are changing predicate
evaluation order at runtime, delaying column decompression,
and switching join algorithms when memory is exhausted and
externalization is required. Further details of our plan structure
and the steps to create it are beyond the scope of this paper.

V. EXPERIMENTAL RESULTS

Fig. 10. Cost model estimates versus actual runtime for multiple plans
to compute the results of Q8 of the TPCH benchmark. The blue line is the
optimizer’s normalized cost estimates and the red line is the normalized actual
run time. The vertical green line signifies the plan chosen by the optimizer.

A. Cost Model Evaluation

In order to gauge the “quality” of our cost model, we
measured the runtime performance and the estimated cost of
all the plans produced by the join order enumeration algorithm
for Q8 from the TPCH benchmark suite. While the plans do
not represent the entire space of possible plans, we manually
verified that the plans considered included the optimal join
patterns for this query. For this experiment, we used a slightly
modified version of the Vertica Analytic Database 6.0 where
we could override the plan chosen by the optimizer. We did
not change any other settings or parameters. We performed
these experiments on the TPCH data set on a 3 node cluster
of HP ProLiant BL460c G7 blade systems.

The results of our experiment are plotted in Figure 10.
The Vertica Optimizer’s cost estimates are plotted in blue and
the actual runtimes are plotted in red. The plan automatically



TABLE I
STATISTICS (QUERIES PLANNED, AVERAGE MEMORY AND TIME REQUIRED
FOR PLANNING) FOR THE VERTICA QUERY OPTIMIZER IN 14 INDIVIDUAL

CUSTOMER SYSTEMS. THESE NUMBERS REFLECT A SINGLE WINDOW IN
TIME, NOT THE ENTIRE LIFETIME OF THE SYSTEMS.

Queries Avg Planning Avg Planning
Planned Memory (MB) Time (ms)
9,683,440 0.88 23.88
8,902,349 0.67 32.87
8,257,351 13.16 124.59
4,967,392 0.75 27.73
4,664,993 11.35 2.97
4,300,289 0.15 30.72
3,500,384 0.48 22.06
2,983,020 0.55 38.11
2,747,417 3.37 98.01
2,718,460 3.65 271.96
2,437,333 0.26 14.45
2,302,822 11.07 222.02
2,085,196 0.17 2.53

... ... ...
97,974,340 3.71 53.11

chosen by the optimizer, designated by a vertical green line,
is the one with the lowest estimated cost. The runtime of the
chosen plan, while slightly longer than the minimal runtime
plan, is quite close to the optimal. The figure shows that the
cost model accurately predicts the jump in execution time
which occurs around query plan 37, and that the optimizer
correctly picks a plan in the faster regime. The plan with the
actual lowest runtime is not chosen due to the data flow (which
the model predicts) not being perfectly aligned with runtime
for some particular plan pattern. This misalignment leads to
the dip in estimated cost for plan 21 without a corresponding
dip in actual runtime. It is, of course, impossible to draw
general conclusions on the quality of a query optimizer from
the analysis of a single query, but we believe this result is
representative of most customer experiences. Similarly to any
query optimizer design which meets the real world, there are
times when pathological data or queries conspire to prevent
an optimal plan and require manual intervention. However,
it has been our experience that the Vertica Analytic Database
produces good plans for the vast majority of customer queries.

B. Customer Statistics

At the time of writing Vertica has well over a thousand
customers in production. We have a database which has
workload information for some of these production clusters
across 3 major and 8 minor software releases of the Vertica
Analytic Database. Due to various technical reasons, the data
in this database is both incomplete and contains a biased record
of Vertica’s use by customers, but nonetheless the information
is still insightful and we share some selected excerpts blow.

We have optimizer runtime and memory usage statistics
for almost 98 million queries run on real customer databases.
Across these queries, the Vertica Query Optimizer requires on
average 55 ms and consumes 3.71 MB of memory to create
a query plan. Table I shows optimizer statistics broken per
individual customers if we had information on at least two

TABLE II
THE TOTAL ON DISK SIZE (INCLUDING COMPRESSION AND COPIES

REQUIRED FOR HIGH AVAILABILITY), IN TERABYTES, ROW COUNTS (IN
MILLIONS), AND NUMBERS OF QUERIES WHICH REFER TO THOSE TABLES

IN SYSTEMS FOR WHICH WE HAVE DATA.

On Disk Size Rows Stored Query Count
184 TB 10,273,815 M 2,151,734
45 TB 702,860 M 1,573,309
32 TB 1,020,209 M 9,397
32 TB 1,372,130 M 266,398
32 TB 992,785 M 331,442
31 TB 1,309,403 M 177,977
29 TB 1,253,861 M 123,351
24 TB 774,069 M 8,703
21 TB 1,043,664 M 183,409
19 TB 594,814 M 8,252

million queries. The number of queries reported is for user
requests only, and does not include system tasks such as plans
run by the Tuple Mover and furthermore reflect a particular
window of time, not the lifetime workload of these systems.
We believe that the significant differences in average time
and memory consumption required for different customers
demonstrates the real world workload heterogeneity which the
Vertica Query Optimizer supports.

Table II shows statistics for some of the largest tables
in our customer database against which our optimizer plans
queries. The on disk size is the total of all projections anchored
on that table, and thus includes all compression effects and
redundancy necessary for high availability. The statistics in
Table II reflect significantly different workloads than the
optimizers in transaction processing systems were designed
to handle. The data size is much larger by comparison, and
the number of queries executed per second is smaller. The
difference in workload is one of the reasons designing the
Vertica Optimizer from scratch made more sense rather than
reusing an optimizer from an existing system.

Our optimizer routinely handles large, complex queries,
generated directly by user as well as automated tools. Table III
shows the distribution of the number of tables referenced in
queries for which we have detailed information. The number
reported is the total distinct number of tables referenced in the
query, including all subquery blocks. Due to how it is captured,
our data counts multiple references to the same table a single
time, and thus the numbers are actually the lower bound on
the actual number of joins in each query. The information
in Table III shows that the Vertica Optimizer’s algorithms
can and regularly does handle complex queries, though the
majority of queries do not contain an excessive number of
joins. More than half the customers for which we have data
regularly use queries which join seven or more tables. We
hope that by sharing this distribution of join complexities in
an industrial setting, we can help future database optimizer
researchers focus on relevant industrial problems.

VI. RELATED WORK

Historically, the idea of a distribution aware query optimizer
and execution was first introduced in the R* system [8], [21].



TABLE III
DISTRIBUTION OF NUMBER OF TABLE REFERENCES (A LOWER BOUND ON

THE NUMBER OF JOINS) PER QUERY, AND THE PERCENTAGE OF
CUSTOMERS WHOSE WORKLOAD CONTAINED QUERIES WITH THAT MANY
TABLE REFERENCES. THIS DATA REFLECTS THE SMALL PERCENTAGE OF
OUR OVERALL CUSTOMER BASE FOR WHICH WE HAVE DETAILED USAGE

DATA.

Tables Per Customers
Query (Percent)
100+ 3 %

50-100 7%
25-49 15%
15-25 37%
10-15 52%

9 49%
8 47%
7 58%
6 68%
5 81%
4 90%
3 95%
2 98%
1 100%

Total 100%

The idea of extensible query optimizers and optimizer frame-
works was first pioneered in the Volcano[12] and Cascades[13]
projects. The Starburst[14] project was the first to describe the
use of a JoinGraph like structure (Query Join Graph) for query
optimization.

Several new commercial database products optimize queries
using a wrapper or other abstraction around an existing SQL
optimizer to retrofitting knowledge of new structures into
it. Typically this approach is taken to reduce implementa-
tion complexity and decrease time to market. For example,
ParAccel extends the PostgresSQL [7] Optimizer to handle
its columnar format and SQL Server Parallel Data Warehouse
product reuses the single node SQL Server Optimizer[25] for
distributed query planning.

SQL Query Optimzation still generates significant research
and industrial interest and is a field rich in needed research.
We are particularly encouraged by recent work such as [10]
which has focused in particular on the needs of join order
enumeration.

VII. CONCLUSIONS

This paper presents the case for custom query optimizers
in novel database systems and described the architecture of
such an optimizer, the Vertica Query Optimizer which is part
of the Vertica Analytic Database. While all of the individual
techniques used in the Vertica Query Optimizer have roots in
the research literature, we hope by enumerating the combina-
tion we used helps guide future efforts and validate past work.
While the wisdom of writing a totally new query optimizer for
the Vertica Analytic Database was not clear eight years ago
when we began, our experience has shown it was well worth
the effort.
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