
Tradeoffs in Massively Parallel
Analytical Systems
MIT IAP Talk
1/10/2013

Andrew Lamb (aalamb@alum.mit.edu)
MIT VI-2 2002, MEng 2003

mailto:aalamb@alum.mit.edu

2

www.vertica.com

Assumptions

 Transactional Workloads
(Oracle, SQL Server)

– Large # transactions per
second (thousands)

– Each transaction involves a
few rows on average

– Example: Credit Card
transaction processing

3

www.vertica.com

Assumptions

 Analytic Workloads

– Fewer transactions per second (10s)

– Each transaction touches large number of rows

– Example: Aggregate sales by region

4

www.vertica.com

Analytic Systems: Criteria for Inclusion

Massively Parallel Processing (MPP)

Often suggested as solutions for Analytics or Big Data

Distributed Systems – run on a

bunch of 64-bit Linux

commodity servers, don't rely

on a shared disk or filesystem

Freely Available (at least to try)

5

www.vertica.com

Systems Compared – Parallel Databases

 Vertica/HP, Greenplum/EMC, etc.

 Native distributed databases (not grafted on to a

shared disk system)

 SQL as native query language

 JDBC/ODCB/etc. Programming APIs

6

www.vertica.com

Systems Compared – Hadoop

 “Software library for distributed processing of large

datasets across clusters of computes using simple

programming model (Map/Reduce)”

 Includes a distributed file system, HDFS

 Open Source clone of Google's GFS/MapReduce

administered by Apache Software Foundation

7

www.vertica.com

Systems Compared – Hive

 “Dataware house system for Hadoop”

 SQL-like language (HiveQL) on top of Hadoop

 A way to bind structure to data in HDFS

 Compiles queries to Hadoop Map/Reduce jobs

8

www.vertica.com

Systems Compared – Pig

 “High level language for data analysis programs”

 Dataflow language, Pig Latin, on top of Hadoop

 Compiles down to Hadoop Map/Reduce jobs

9

www.vertica.com

Systems Compared – HBase

 Key Value store which can host “very large tables --

billions of rows X millions of columns -- atop clusters of

commodity hardware.”

 Open Source clone of Google's Big Table

 Not really design for Analytical workloads, but included

out of interest and common confusion

10

www.vertica.com

Now is a good time to point out...

 I work for Vertica/HP

 I wrote a lot of its SQL optimizer

 I am not a NoSQL fanboy
– Know SQL before you NoSQL

11

www.vertica.com

Now is a good time to point out...

My opinions:
– Relational model (aka SQL) works fine for Big Data
– Legacy RDBMS implementations were designed and

matured for different workloads and hardware

My evidence: Vertica has
– 600+ Customers
– At least 3 customers with more than 1PB in single instance

production databases (continually load and query)
– At least one customer which has loaded (and queries)

10,000,000,000,000 (10T) rows in a single table

12

www.vertica.com

Moving on ….

Rest of the talk focused on the tradeoffs

13

www.vertica.com

Handling Single Row Operations

 CRUD Operations on a single record at a time: Create

Read Update Delete

 Sometimes referred to as 'Point Queries' as they

lookup ~1 record based on key

 Don't confuse storing / retrieving a huge number of

keys (aka one key per web page) with analysis (e.g.

trend identification for human consumption)

14

www.vertica.com

Handling Single Row Operations

 Analytic Systems are typically bad for single
row operations:

 Vertica + other parallel databases, Hadoop
(MapReduce), Pig, Hive

 Optimized for large number of rows per
operation

– Startup time to begin execution going
often dominates for small workloads

– Incremental cost per row is very small

15

www.vertica.com

Handling Single Row Operations

 Key/Value and Document Stores excel at
single row operations

 Design point is to handle large numbers of
individual CRUD operations and they do it
very well

 HBase

16

www.vertica.com

Declarative vs Procedural Analytics

 Declarative Analytics: Specify what you want, system
figures out how to compute it.

 Pros:

– Abstraction frees you from lots of nasty details

– You don't have to know how to program, only write
queries → much larger number of potential users

 Cons:

– Hope you can express what you want in SQL or
equivalent/derivative.

 Vertica + other parallel databases, Hive, Pig

17

www.vertica.com

Declarative vs Procedural Analytics

* Simple Matter Of Programming

 Procedural Analytics: Explicitly specify computation in
your language using APIs provided by system.

 Pros:

– Can compute 'anything' with SMOP*

– Commonly preferred (at least at first) by
programmers

 Cons:

– Must be a programmer to use

– Significant amounts of code for simple questions

 Hadoop, Pig, HBase

18

www.vertica.com

Query Performance vs Query Flexibility

 “Processing Unstructured Data” is a fallacy

 The tradeoff is really when you bind structure to the
data for processing.

19

www.vertica.com

Query Performance vs Query Flexibility

 If you bind structure to the data at load time:
 Pros:

– System can optimized physical structures based on
the data structure resulting in faster query
processing

 Cons

– Need to spend time declare your schema before
you can even load it, less flexibility

 Vertica + other parallel databases

20

www.vertica.com

Query Performance vs Query Flexibility

 If you bind structure to the data at query time

 Pros:
– Lower startup cost: can just load data without

defining / determining its structure

 Cons

– Slower query processing due to general physical
data structures. Limited optimization potential (data
is opaque until runtime)

● Hadoop (MapReduce), Pig, Hive

21

www.vertica.com

Query Performance vs Query Flexibility

 If you never bind structure to the data

 Pros:
– System is very simple, handles keys and opaque

data items

 Cons

– Optimization potential (other than CRUD) is non-
existent.

● HBase and other key-value stores

22

www.vertica.com

Latency between load and querability

 How long between when you tell the system to load

data and when you can access it via queries?

23

www.vertica.com

Latency between load and querability

 High ~ minutes
– Significant per-job startup overhead

– Hadoop, Pig, Hive

 Medium ~ 100s of milliseconds
– Parse / Validate / Optimize incoming data

– Vertica + other parallel databases

 Low ~ milliseconds

– Working set is all in memory

– HBase

24

www.vertica.com

Consistency

 What happens if two people put data in at once?

 What happens if two people take data out at the same

time (do they see the same thing)?

 What happens if someone looks at two different tables

at the same time?

25

www.vertica.com

Consistency

 Strong
– ACID consistency via transactions

– Vertica + other parallel databases

 Limited
– Strong consistency for a particular key, no cross key

consistency

– HBase

 None
– Consistency, if needed, guaranteed by application layer

– Hadoop (MapReduce), Pig, Hive

26

www.vertica.com

Cost Structures

 Greater Upfront Investment
– Greater Capital Expense (CapEx)

 Commercial software requires
– License fees before any production deployment

– Ongoing tech support pre-paid

 Vertica and other parallel databases + “Enterprise”
distributions of H* systems (e.g. Cloudera,
Hortonworks)

27

www.vertica.com

Cost Structures

 Greater Operational Expense (OpEx):

 Open source + community support means initial CapEx
is close to $0; ongoing OpEx is higher

 Less efficient hardware usage

 Less mature (but maturing) documentation,
integrations with existing applications, user base, etc.

 Hadoop (MapReduce), Hive, Pig, HBase

28

Thank you

• Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

