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Assumptions

 Transactional Workloads 
(Oracle, SQL Server)

– Large # transactions per 
second (thousands)

– Each transaction involves a 
few rows on average

– Example: Credit Card 
transaction processing
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Assumptions

 Analytic Workloads

– Fewer transactions per second (10s)

– Each transaction touches large number of rows

– Example: Aggregate sales by region
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Analytic Systems: Criteria for Inclusion

Massively Parallel Processing (MPP) 

Often suggested as solutions for Analytics or Big Data

Distributed Systems – run on a 

bunch of 64-bit Linux 

commodity servers, don't rely 

on  a shared disk or filesystem 

Freely Available (at least to try)
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Systems Compared – Parallel Databases

 Vertica/HP, Greenplum/EMC, etc.

 Native distributed databases (not grafted on to a 

shared disk system)

 SQL as native query language

 JDBC/ODCB/etc. Programming APIs
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Systems Compared – Hadoop

 “Software library for distributed processing of large 

datasets across clusters of computes using simple 

programming model (Map/Reduce)”

 Includes a distributed file system, HDFS

 Open Source clone of Google's GFS/MapReduce 

administered by Apache Software Foundation
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Systems Compared – Hive

 “Dataware house system for Hadoop”

 SQL-like language (HiveQL) on top of Hadoop

 A way to bind structure to data in HDFS

 Compiles queries to Hadoop Map/Reduce jobs
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Systems Compared – Pig

 “High level language for data analysis programs”

 Dataflow language, Pig Latin, on top of Hadoop

 Compiles down to Hadoop Map/Reduce jobs
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Systems Compared – HBase

 Key Value store which can host “very large tables -- 

billions of rows X millions of columns -- atop clusters of 

commodity hardware.”

 Open Source clone of Google's Big Table

 Not really design for Analytical workloads, but included 

out of interest and common confusion
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Now is a good time to point out...

 I work for Vertica/HP

 I wrote a lot of its SQL optimizer

 I am not a NoSQL fanboy 
– Know SQL before you NoSQL
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Now is a good time to point out...

My opinions:
– Relational model (aka SQL) works fine for Big Data
– Legacy RDBMS implementations were designed and 

matured for different workloads and hardware

My evidence: Vertica has
– 600+ Customers
– At least 3 customers with more than 1PB in single instance 

production databases (continually load and query)
– At least one customer which has loaded (and queries) 

10,000,000,000,000 (10T) rows in a single table



12

www.vertica.com

Moving on ….

Rest of the talk focused on the tradeoffs 
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Handling Single Row Operations

 CRUD Operations on a single record at a time: Create 

Read Update Delete

 Sometimes referred to as 'Point Queries' as they 

lookup ~1 record based on key

 Don't confuse storing / retrieving a huge number of 

keys (aka one key per web page) with analysis (e.g. 

trend identification for human consumption)
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Handling Single Row Operations

 Analytic Systems are typically bad for single 
row operations:

 Vertica + other parallel databases, Hadoop 
(MapReduce), Pig, Hive 

 Optimized for large number of rows per 
operation

– Startup time to begin execution going 
often dominates for small workloads

– Incremental cost per row is very small



15

www.vertica.com

Handling Single Row Operations

 Key/Value and Document Stores excel at 
single row operations

 Design point is to handle large numbers of 
individual CRUD operations and they do it 
very well

 HBase 
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Declarative vs Procedural Analytics

 Declarative Analytics: Specify what you want, system 
figures out how to compute it. 

 Pros: 

– Abstraction frees you from lots of nasty details

– You don't have to know how to program, only write 
queries → much larger number of potential users

 Cons: 

– Hope you can express what you want in SQL or 
equivalent/derivative.

 Vertica + other parallel databases, Hive, Pig
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Declarative vs Procedural Analytics

* Simple Matter Of Programming

 Procedural Analytics: Explicitly specify computation in 
your language using APIs provided by system.

 Pros:

– Can compute 'anything' with SMOP*

– Commonly preferred (at least at first) by 
programmers

 Cons:

– Must be a programmer to use

– Significant amounts of code for simple questions

 Hadoop, Pig, HBase
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Query Performance vs Query Flexibility

 “Processing Unstructured Data” is a fallacy

 The tradeoff is really when you bind structure to the 
data for processing.
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Query Performance vs Query Flexibility

 If you bind structure to the data at load time:
 Pros:

– System can optimized physical structures based on 
the data structure resulting in faster query 
processing

 Cons

– Need to spend time declare your schema before 
you can even load it, less flexibility

 Vertica + other parallel databases
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Query Performance vs Query Flexibility

 If you bind structure to the data at query time

 Pros:
– Lower startup cost: can just load data without 

defining / determining its structure

 Cons

– Slower query processing due to general physical 
data structures. Limited optimization potential (data 
is opaque until runtime) 

● Hadoop (MapReduce), Pig, Hive
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Query Performance vs Query Flexibility

 If you never bind structure to the data

 Pros:
– System is very simple, handles keys and opaque 

data items

 Cons

– Optimization potential (other than CRUD) is non-
existent.

● HBase and other key-value stores
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Latency between load and querability

 How long between when you tell the system to load 

data and when you can access it via queries?
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Latency between load and querability

 High ~ minutes
– Significant per-job startup overhead

– Hadoop, Pig, Hive

 Medium ~ 100s of milliseconds
– Parse / Validate / Optimize incoming data

– Vertica + other parallel databases

 Low ~ milliseconds 

– Working set is all in memory 

– HBase
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Consistency

 What happens if two people put data in at once?

 What happens if two people take data out at the same 

time (do they see the same thing)?

 What happens if someone looks at two different tables 

at the same time?
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Consistency

 Strong 
– ACID consistency via transactions

– Vertica + other parallel databases

 Limited
– Strong consistency for a particular key, no cross key 

consistency

– HBase

 None
– Consistency, if needed, guaranteed by application layer

– Hadoop (MapReduce), Pig, Hive
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Cost Structures

 Greater Upfront Investment
– Greater Capital Expense (CapEx)

 Commercial software requires
– License fees before any production deployment

– Ongoing tech support pre-paid

 Vertica and other parallel databases + “Enterprise” 
distributions of H* systems (e.g. Cloudera, 
Hortonworks)
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Cost Structures

 Greater Operational Expense (OpEx):

 Open source + community support means initial CapEx 
is close to $0; ongoing OpEx is higher 

 Less efficient hardware usage

 Less mature (but maturing) documentation, 
integrations with existing applications, user base, etc.

 Hadoop (MapReduce), Hive, Pig, HBase
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Thank you

• Questions?
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