
Linear Analysis and Optimization of Stream Programs

Andrew A. Lamb, William Thies and Saman Amarasinghe

{aalamb, thies, saman}@lcs.mit.edu

Laboratory for Computer Science
Massachusetts Institute of Technology

ABSTRACT
As more complex DSP algorithms are realized in practice,
there is an increasing need for high-level stream abstractions
that can be compiled without sacrificing efficiency. Toward
this end, we present a set of aggressive optimizations that
target linear sections of a stream program. Our input lan-
guage is StreamIt, which represents programs as a hierar-
chical graph of autonomous filters. A filter is linear if each
of its outputs can be represented as an affine combination of
its inputs. Linearity is common in DSP components; exam-
ples include FIR filters, expanders, compressors, FFTs and
DCTs.

We demonstrate that several algorithmic transformations,
traditionally hand-tuned by DSP experts, can be completely
automated by the compiler. First, we present a linear ex-
traction analysis that automatically detects linear filters from
the C-like code in their work function. Then, we give a
procedure for combining adjacent linear filters into a single
filter, as well as for translating a linear filter to operate in
the frequency domain. We also present an optimization se-
lection algorithm, which finds the sequence of combination
and frequency transformations that will give the maximal
benefit.

We have completed a fully-automatic implementation of
the above techniques as part of the StreamIt compiler, and
we demonstrate a 450% performance improvement over our
benchmark suite.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors; D.3.2 [Pro-

gramming Languages]: Language Classifications; D.2.2
[Software Engineering]: Software Architectures; D.3.3
[Programming Languages]: Language Constructs and
Features

General Terms
Languages, Performance, Design, Algorithms

Keywords
Stream Programming, StreamIt, Optimization, Embedded,
Linear Systems, Algebraic Simplification, DSP, FFT

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-662-5/03/0006 ...$5.00

1. INTRODUCTION
Digital computation is a ubiquitous element of modern

life. Everything from cell phones to HDTV systems to satel-
lite radios require increasingly sophisticated algorithms for
digital signal processing. Optimization is especially impor-
tant in this domain, as embedded devices commonly have
high performance requirements and tight resource constraints.
Consequently, there are often two stages to the development
process: first, the algorithm is designed and simulated at a
high level of abstraction, and second, it is optimized and re-
implemented at a low level by an expert DSP programmer.
In order to achieve high performance, the DSP programmer
needs to take advantage of architecture-specific features and
constraints (usually via extensive use of assembly code) as
well as global properties of the application that could be ex-
ploited to obtain algorithmic speedups. Apart from requir-
ing expert knowledge, this effort is time-consuming, error-
prone, and costly, and must be repeated for every change in
the target architecture and every adjustment to the high-
level system design. As embedded applications continue to
grow in complexity, these factors will become unmanageable.
There is a pressing need for high-level DSP abstractions that
can be compiled without any performance penalty.

In this paper, we develop a set of optimizations that lower
the entry barrier for high-performance stream programming.
Our work is done in the context of StreamIt [7, 19], which is
a high-level language for signal processing applications. A
program in StreamIt is comprised of a set of concurrently ex-
ecuting filters, each of which contains its own address space
and communicates with its neighbors using FIFO queues.
Our analysis focuses on filters which are linear: their outputs
can be expressed as an affine combination of their inputs.
Linear filters are common in DSP applications; examples in-
clude FIR filters, expanders, compressors, FFTs and DCTs.

In practice, there are a host of optimizations that are
applied to linear portions of a stream graph. In partic-
ular, neighboring linear nodes can be combined into one,
and large linear nodes can benefit from translation into the
frequency domain. However, these optimizations require
detailed mathematical analysis and are tedious and com-
plex to implement. They are only beneficial under cer-
tain conditions—conditions that might change with the next
version of the system, or that might depend on neighbor-
ing components that are being written by other develop-
ers. To improve the modularity, portability, and extensibil-
ity of stream programs, the compiler should be responsible
for identifying linear nodes and performing the appropriate
optimizations. Toward this end, we make the following con-
tributions:

FIR1 FIR2

Figure 1: Block diagram of two FIR filters.

/* perform two consecutive FIR filters with weights w1, w2 */
void two_filters(float* w1, float* w2, int N) {

int i;
float data[N]; /* input data buffer */

float buffer[N]; /* inter-filter buffer */

for (i=0; i<N; i++) { /* initialize the input data buffer */

data[i] = get_next_input();
}

for (i=0; i<N; i++) { /* initialize inter-filter buffer */
buffer[i] = filter(w1, data, i, N);

data[i] = get_next_input();
}

i = 0;

while(true) {
/* generate next output item */
push_output(filter(w2, buffer, i, N));

/* generate the next element in the inter-filter buffer */
buffer[i] = filter(w1, data, i, N);

/* get next data item */
data[i] = get_next_input();

/* update current start of buffer */
i = (i+1)%N;

}

}

/* perform N-element FIR filter with weights and data */
float filter(float* weights, float* data, int pos, int N) {

int i;

float sum = 0;

/* perform weighted sum, starting at index pos */
for (i=0; i<N; i++, pos++) {

sum += weights[i] * data[pos];
pos = (pos+1)%N;

}

return sum;
}

Figure 2: Two consecutive FIR filters in C. Channels

are represented as circular buffers, and the schedul-

ing is done by hand.

• A linear dataflow analysis that extracts an abstract
linear representation from imperative C-like code.

• An automated transformation of neighboring linear
nodes into a single collapsed representation.

• An automated translation of linear nodes into the fre-
quency domain.

• An optimization selection algorithm that determines
which transformations are most beneficial to apply.

• A fully-automatic implementation of these techniques
in the StreamIt compiler, demonstrating an average
speedup of 450% and a best-case speedup of 800%.

In the rest of this section, we give a motivating example and
background information on StreamIt. Then we present our
linear node representation (Section 2) and our supporting
dataflow analysis (Section 3). Next we describe structural
transformations on linear nodes (Section 4), a frequency do-
main optimization (Section 5) and an optimization selec-
tion algorithm (Section 6). Finally, we present results (Sec-
tion 7), related work (Section 8) and conclusions (Section 9).

1.1 Motivating Example
To illustrate the program transformations that our tech-

nique is designed to automate, consider a sequence of finite
impulse response (FIR) filters as shown in Figure 1. The

float->float pipeline TwoFilters(float[N] w1, float[N] w2) {
add FIRFilter(w1);

add FIRFilter(w2);
}

float->float filter FIRFilter(float[N] weights) {
work push 1 pop 1 peek N {

float sum = 0;
for (int i=0; i<N; i++) {

sum += weights[i] * peek(i);
}
push(sum);

pop();
}

}

Figure 3: Two consecutive FIR filters in StreamIt.

Buffer management and scheduling are handled by

the compiler.

float->float filter CollapsedTwoFilters(float[N] w1, float[N] w2) {

float[N] combined_weights;

init { /* calculate combined_weights from w1 and w2 */ }

work push 1 pop 1 peek N {

float sum = 0;
for (int i=0; i<N; i++) {

sum += combined_weights[i]*peek(i);
}

push(sum);

pop();
}

}

Figure 4: Combined version of the two FIR filters.

Since each FIR filter is linear, the weights can be

combined into a single combined weights array.

float->float pipeline FreqTwoFilters(float[N] w1, float[N] w2) {
float[N] combined_weights = ... ; // calc. combined weights
complex[N] H = fft(combined_weights); // take FFT of weights

add FFT(); // add FFT stage to stream
add ElementMultiply(H); // add multiplication by H

add IFFT(); // add inverse FFT
}

Figure 5: Combined version of two FIR filters in the

frequency domain.

imperative C style code that implements this simple DSP
application is shown in Figure 2. The program largely de-
fies many standard compiler analysis and optimization tech-
niques because of its use of circular buffers and the muddled
relationship between data, buffer and the output.

Figure 3 shows the same filtering process in StreamIt. The
StreamIt version is more abstract than the C version. It
indicates the communication pattern between filters, shows
the structure of the original block diagram and leaves the
complexities of buffer management and scheduling to the
compiler.

Two optimized versions of the FIR program are shown in
Figures 4 and 5. In Figure 4, the programmer has combined
the weights arrays from the two filters into a single, equiv-
alent array. This reduces the number of multiply operations
by a factor of two. In Figure 5, the programmer has done
the filtering in the frequency domain. Computationally in-
tensive streams are more efficient in frequency than in time.

Our linear analysis can automatically derive both of the
implementations in Figures 4 and 5, starting with the code in
Figure 3. These optimizations free the programmer from the
burden of combining and optimizing linear filters by hand.
Instead, the programmer can design modular filters at the
natural granularity for the algorithm in question and rely
on the compiler for combination and transformation.

stream

stream

stream

stream

splitter

stream stream

join
���

joiner

stream

splitter

stream

(a) A pipeline. (b) A splitjoin. (c) A feedbackloop.

Figure 6: Stream structures supported by StreamIt.

1.2 StreamIt
StreamIt is a language and compiler for high-performance

signal processing [6, 7, 19]. In a streaming application, each
data item is in the system for only a small amount of time,
as opposed to scientific applications where the data set is
used extensively over the entire execution. Also, stream
programs have abundant parallelism and regular commu-
nication patterns. The StreamIt language aims to expose
these properties to the compiler while maintaining a high
level of abstraction for the programmer.

StreamIt programs are composed of processing blocks called
filters. Each filter has an input tape from which it can read
values and an output tape to which it can write values. Each
filter also contains a work function which describes the fil-
ter’s atomic execution step in the steady state. If the first
invocation of the work function has different behavior than
other executions, a special prework function is defined.

The work function contains C-like imperative code, which
can access filter state, call external routines and produce and
consume data. The input and output channels are treated
as FIFO queues, which can be accessed with three primitive
operations: 1) pop(), which returns the first item on the
input tape and advances the tape by one item, 2) peek(i),
which returns the value at the ith position on the input
tape, and 3) push(v), which pushes value v onto the output
tape. Each filter must declare the maximum element it will
peek at, the number of elements it will pop, and the number
of elements that it will push during an execution of work.
These rates must be resolvable at compile time and constant
from one invocation of work to the next.

A program in StreamIt consists of a hierarchical graph
of filters. Filters can be connected using one of the three
predefined structures shown in Figure 6: 1) pipelines rep-
resent the serial computation of one filter after another, 2)
splitjoins represent explicitly parallel computation, and 3)
feedbackloops allow cycles to be introduced into the stream
graph. A stream is defined to be either a filter, pipeline,
splitjoin or feedbackloop. Every subcomponent of a struc-
ture is a stream, and all streams have exactly one input tape
and exactly one output tape.

It has been our experience that most practical applications
can be represented using StreamIt’s hierarchical structures.
Though sometimes a program needs to be reorganized to
fit into the structured paradigm, there are benefits for both
the programmer and the compiler in having a structured
language [19]. In particular, the linear analyses described
in this paper rely heavily on the structure of StreamIt since
they focus on each hierarchical primitive rather than dealing
with the complexity of arbitrary graphs.

float->float filter ExampleFilter {

 work peek 3 pop 1 push 2 {

 push(3*peek(2)+5*peek(1));

 push(2*peek(2)+peek(0)+6);

 pop();

 }

}

{A, b, 3, 1, 2}λ =

[]6 0b =

A = []2

0

1

3

5

0

Linear Extraction

A + =bx y

x y

Figure 7: Representation of a linear node.

2. REPRESENTING LINEAR NODES
There is no general relationship that must hold between

a filter’s input data and its output data. In actual appli-
cations, the output is typically derived from the input, but
the relationship is not always clear since a filter has state
and can call external functions.

However, we note that a large subset of DSP operations
produce outputs that are some affine function of their in-
put, and we call filters that implement such operations lin-
ear. Examples of such filters are finite impulse response
(FIR) filters, compressors, expanders and signal processing
transforms such as the discrete Fourier transform (DFT)
and discrete cosine transformation (DCT). Our formal defi-
nition of a linear node is as follows (refer to Figure 7 for an
illustration).

Definition 1. (Linear node) A linear node λ = {A, ~b,
e, o, u} represents an abstract stream block which performs

an affine transformation ~y = ~xA +~b from input elements ~x

to output elements ~y. A is an e×u matrix, ~b is a u-element
row vector, and e, o and u are the peek, pop and push rates,
respectively.

A “firing” of a linear node λ corresponds to the following
series of abstract execution steps. First, an e-element row
vector ~x is constructed with ~x[i] = peek(e− 1− i). The node

computes ~y = ~xA +~b, and then pushes the u elements of ~y
onto the output tape, starting with ~y [u − 1] and proceeding
through ~y [0]. Finally, o items are popped from the input
tape.

The intuition of the computation represented by a linear
node is simply that specific columns generate specific out-
puts and specific rows correspond to using specific inputs.
The values found in row e−1− i of A (i.e., the ith row from
the bottom) and column u−1− j of A (i.e., the jth column
from the right) represents a term in the formula to compute
the jth output item using the value of peek(i). The value in

column u− 1− j of ~b is a constant offset added to output j.
Figure 7 shows a concrete example of a work function and
its corresponding linear node.

3. LINEAR EXTRACTION ALGORITHM
Our linear extraction algorithm can identify a linear filter

and construct a linear node λ that fully captures its be-
havior. The technique, which appears as Algorithm 1 on

Algorithm 1 Linear extraction analysis.

proc Toplevel(filter F) returns linear node for F

1. Set globals Peek, Pop, Push to I/O rates of filter F .

2. Let A0 ← new float[Peek, Push] with each entry = ⊥

3. Let ~b0 ← new float[Push] with each entry = ⊥

4. (map, A,~b, popcount, pushcount)←

Extract(Fwork , (λx.⊥), A0,~b0, 0, 0)

5. if A and ~b contain no > or ⊥ entries then

return linear node λ = {A,~b, Peek, Pop, Push}
else

fail
endif

proc BuildCoeff(int pos) returns ~v for peek at index pos
~v = ~0
~v[Peek− 1 − pos] = 1
return ~v

the next page, is a flow-sensitive, forward dataflow analysis
similar to constant propagation. Unlike a standard dataflow
analysis, we can afford to symbolically execute all loop iter-
ations, since most loops within a filter’s work function have
small bounds that are known at compile time (if a bound is
statically unresolvable, the filter is unlikely to be linear and
we disregard it).

During symbolic execution, the algorithm computes the
following for each point of the program (refer to Figure 8
for notation):
• A map between each program variable y and a linear

form 〈~v, c〉 where ~v is a Peek-element column vector
and c is a scalar constant. In an actual execution, the
value of y would be given by y = ~x · ~v + c, where ~x
represents the input items.

• Matrix A and vector ~b, which will represent the linear
node. These values are constructed during the opera-
tion of the algorithm.
• pushcount, which indicates how many items have been

pushed so far. This is used to determine which column

of A and ~b correspond to a given push statement.
• popcount, which indicates how many items have been

popped so far. This is used to determine the input
item that a given peek or pop expression refers to.

We now briefly discuss the operation of Extract at each
program node. The algorithm is formulated in terms of a
simplified set of instructions, which appear in Figure 8. First
are the nodes that generate fresh linear forms. A constant
assignment y = c creates a form 〈~0, c〉 for y, since y has con-
stant part c and does not yet depend on the input. A pop
operation creates a form 〈BuildCoeff(popcount), 0〉, where
BuildCoeff introduces a coefficient of 1 for the current in-
dex on the input stream. A peek(i) operation is similar, but
offset by the index i.

Next are the instructions which combine linear forms. In
the case of addition or subtraction, we simply add the com-
ponents of the linear forms. In the case of multiplication,
the result is still a linear form if either of the terms is a
known constant (i.e., a linear form 〈~0, c〉). For division, the
result is linear only if the divisor is a non-zero constant1 and
1Note that if the dividend is zero and the divisor has a non-zero
coefficients vector, we cannot conclude that the result is zero,
since certain runtime inputs might cause a singularity.

proc Extract(code, map, A, ~b, int popcount, int pushcount)

returns updated map, A, ~b, popcount, and pushcount
for i← 1 to code.length do

switch code[i]
case y := const

map.put(y, (~0, const))

case y := pop()
map.put(y, 〈BuildCoeff(popcount), 0〉)
popcount++

case y := peek(i)
map.put(y, 〈BuildCoeff(popcount + i), 0〉)

case push(y)
〈~v, c〉 ← map.get(y)
if pushcount = > then fail
A[∗, Push− 1 − pushcount]← ~v
~b[Push− 1 − pushcount]← c
pushcount++

case y1 := y2 op y3, for op ∈ {+,−}
〈~v2, c2〉 ← map.get(y2)
〈~v3, c3〉 ← map.get(y3)
map.put(y1, 〈~v2 op ~v3, c2 op c3〉)

case y1 := y2 ∗ y3

〈~v2, c2〉 ← map.get(y2)
〈~v3, c3〉 ← map.get(y3)

if ~v2 = ~0 then

map.put(y1, (c2 ∗ ~v3, c2 ∗ c3))

else if ~v3 = ~0 then

map.put(y1, (c3 ∗ ~v2, c3 ∗ c2))
else

map.put(y1,>)

case y1 := y2/y3

〈~v2, c2〉 ← map.get(y2)
〈~v3, c3〉 ← map.get(y3)

if ~v3 = ~0 ∧ c3 6= 0 then

map.put(y1, (
1
c3
∗ ~v2, c2/c3))

else

map.put(y1,>)

case y1 := y2 op y3, for op ∈ {&, |,∧, &&, ||, !, etc.}
〈~v2, c2〉 ← map.get(y2)
〈~v3, c3〉 ← map.get(y3)

map.put(y1, (~0 t ~v2 t ~v3, c2 op c3))

case (loop N code′)
for j ← 1 to N do

(map, A,~b, popcount, pushcount) ←

Extract(code,map, A,~b, popcount, pushcount)

case (branch code1 code2)

(map1, A1,~b1, popcount1, pushcount1)←

Extract(code1,map, A,~b, popcount, pushcount)

(map2, A2,~b2, popcount2, pushcount2)←

Extract(code2,map, A,~b, popcount, pushcount)
map← map1 tmap2

A← A1 tA2
~b← ~b1 t~b2

popcount ← popcount1 t popcount2
pushcount ← pushcount1 t pushcount2

end for

return (map, A, ~b, popcount, pushcount)

y ∈ program-variable
c ∈ constant>

~v,~b ∈ vector>

〈~v, c〉 ∈ linear-form>

map ∈ program-variable→ linear-form (a hashtable)
A ∈ matrix>

code ∈ list of instructions, each of which can be:

y1 := const push(y1)
y1 := pop() (loop N code)
y1 := peek(i) (branch code1 code2)
y1 := y2 op y3

Figure 8: Data types for the extraction analysis.

for non-linear operations (e.g., bit-level and boolean), both
operands must be known constants. If any of these condi-
tions are not met, then the LHS is assigned a value of >,
which will mark the filter as non-linear if the value is ever
pushed.

The final set of instructions deal with control flow. For
loops, we resolve the bounds at compile time and execute the
body an appropriate number of times. For branches, we have
to ensure that all the linear state is modified consistently on
both sides of the branch. For this we apply the confluence
operator t, which we define for scalar constants, vectors,
matrices, linear forms, and maps. c1tc2 is defined according
to the lattice constant>. That is, c1 t c2 = c1 if and only
if c1 = c2; otherwise, c1 t c2 = >. For vectors, matrices,
and linear forms, t is defined element-wise; for example,
A′ = A1 t A2 is equivalent to A′[i, j] = A1[i, j] t A2[i, j].
For maps, the join is taken on the values: map1 t map2 =
map’, where map’.get(x) = map1.get(x) tmap2.get(x).

Our implementation of linear extraction is also interproce-
dural. It is straightforward to transfer the linear state across
a call site, although we omit this from the pseudocode for
the sake of presentation. Also implicit in the algorithm de-
scription is the fact that all variables are local to the work
function. If a filter has persistent state, all accesses to that
state are marked as >.

4. COMBINING LINEAR FILTERS
A primary benefit of linear filter analysis is that neighbor-

ing filters can be collapsed into a single matrix representa-
tion if both of the filters are linear. This transformation can
automatically eliminate redundant computations in linear
sections of the stream graph, thereby allowing the program-
mer to write simple, modular filters and leaving the combi-
nation to the compiler. In this section, we first describe a
linear expansion operation that is needed to match the sizes

of A and ~b for different linear nodes and is therefore an es-
sential building block for the other combination techniques.
We then give rules for collapsing pipelines and splitjoins into
linear nodes; we do not deal with feedbackloops as they re-
quire “linear state,” which we do not describe here.

4.1 Linear Expansion
In StreamIt programs, the input and output rate of each

filter in the stream graph is known at compile time. The
StreamIt compiler leverages this information to compute a
static schedule—that is, an ordering of the node executions
such that each filter will have enough data available to atom-
ically execute its work function, and no buffer in the stream
graph will grow without bound in the steady state. A gen-

U' mod U U U U UU'

e o

e

e

e'

o

e

e

o

0

0

A
A

A

A
A

e' - (e + o (- 1))u'
u*

Figure 9: Expanding a linear node to rates (e′, o′, u′).

eral method for scheduling StreamIt programs is given by
Karczmarek [10].

A fundamental aspect of the steady-state schedule is that
neighboring nodes might need to be fired at different fre-
quencies. For example, if there are two filters F1 and F2

in a pipeline and F1 produces 2 elements during its work
function but F2 consumes 4 elements, then it is necessary to
execute F1 twice for every execution of F2.

Consequently, when we combine hierarchical structures
into a linear node, we often need to expand a matrix repre-
sentation to represent multiple executions of the correspond-
ing stream. Expansion allows us to multiply and interleave
columns from matrices that originally had mismatching di-
mensions. The transformation can be done as follows.

Transformation 1. (Linear expansion) Given a linear

node λ = {A,~b, e, o, u}, the expansion of λ to a rate of

(e′, o′, u′) is given by expand(λ, e′, o′, u′) = {A′,~b′, e′, o′, u′},

where A′ is a e′×u′ matrix and ~b′ is a u′-element row vec-
tor:

shift(r, c) is a u′ × e′ matrix :

shift(r, c)[i, j] =

�� � A[i− r, j − c]
if i − r ∈ [0, e− 1] ∧ j − c ∈ [0, u− 1]

0 otherwise

A′ = � du′/ue
m=0 shift(u′ − u −m ∗ u, e′ − e−m ∗ o)

~b′[j] = ~b [u − 1− (u′ − 1 − j) mod u]

The intuition behind linear expansion is straightforward
(see Figure 9). Linear expansion aims to scale the peek,
pop and push rates of a linear node while preserving the
functional relationship between the values pushed and the
values peeked on a given execution. To do this, we construct
a new matrix A′ that contains copies of A along the diagonal
starting from the bottom right. To account for items that
are popped between invocations, each copy of A is offset by
o from the previous copy. The complexity of the definition
is due to the end cases. If the new push rate u′ is not a
multiple of the old push rate u, then the last copy of A
includes only some of its columns. Similarly, if the new
peek rate e′ exceeds that which is needed by the diagonal
of As, then A′ needs to be padded with zeros at the top
(since it peeks at some values without using them in the
computation).

Note that a sequence of executions of an expanded node
λ′ might not be equivalent to any sequence of executions of
the original node λ, because expansion resets the push and
pop rates and can thereby modify the ratio between them.
However, if u′ = k ∗u and o′ = k ∗o for some integer k, then
λ′ is completely interchangeable with λ. In the combination
rules that follow, we utilize linear expansion both in contexts
that do and do not satisfy this condition.

4.2 Collapsing Linear Pipelines
The pipeline construct is used to compose streams in se-

quence, with the output of stream i connected to the input of
stream i+1. The following transformation describes how to
collapse two linear nodes in a pipeline; it can be applied re-
peatedly to collapse any number of neighboring linear nodes.

Transformation 2. (Pipeline combination) Given two
linear nodes λ1 and λ2 where the output of λ1 is connected
to the input of λ2 in a pipeline construct, the combination

pipeline(λ1, λ2) = {A′, ~b′, e′,o′,u′} represents an equiva-
lent node that can replace the original two. Its components
are as follows:

chanPop = lcm(u1, o2)

chanPeek = chanPop + e2 − o2

λe
1 = expand(λ1, (� chanPeek

u1 � − 1) ∗ o1 + e1,

chanPop ∗ o1
u1

, chanPeek)

λe
2 = expand(λ2, chanPeek,

chanPop, chanPop ∗ u2
o2

)

A′ = Ae
1A

e
2

~b′ = ~be
1A

e
2 +~be

2

e′ = ee
1

o′ = oe
1

u′ = ue
2

The basic forms of the above equations are simple to de-
rive. Let ~xi and ~yi be the input and output channels, respec-

tively, for λi. Then we have by definition that ~y1 = ~x1A1+~b1

and ~y2 = ~x2A2+~b2. But since λ1 is connected to λ2, we have

that ~x2 = ~y1 and thus ~y2 = ~y1A2+~b2. Substituting the value

of ~y1 from our first equation gives ~y2 = ~x1A1A2 +~b1A2 +~b2.
Thus, the intuition is that the two-filter sequence can be

represented by matrices A′ = A1A2 and ~b′ = ~b1A2 + ~b2,
with peek and pop rates borrowed from λ1 and the push
rate borrowed from λ2.

However, there are two implicit assumptions in the above
analysis which complicate the equations for the general case.
First, the dimensions of A1 and A2 must match for the ma-
trix multiplication to be well-defined. If u1 6= e2, we first
construct expanded nodes λe

1 and λe
2 in which the push and

peek rates match so Ae
1 and Ae

2 can be multiplied.
The second complication is with regards to peeking. If

the downstream node λ2 peeks at items which it does not
consume (i.e., if e2 > o2), then there needs to be a buffer
to hold items that are read during multiple invocations of
λ2. However, in our current formulation, a linear node has
no concept of internal state, such that this buffer cannot
be incorporated into the collapsed representation. To deal
with this issue, we adjust the expanded form of λ1 to re-
calculate items that λ2 uses more than once, thereby trad-
ing computation for storage space. This adjustment is ev-
ident in the push and pop rates chosen for λe

1: though λ1

{ ,0,3,1,1}

Linear Expansion

{ ,0,3,1,1}

[] []1

2

3

4

5

[] []
1

2

0

0

0

1

2

0

0

0

1

2

[]
3

10

13

10

3

4

5

{ ,0,2,1,1}

{ ,0,4,1,3}

{ ,0,4,1,1}

λ1 1

e

e

'

'

e e

=

λ

λ

1=

=

λ2=

λ 2
=

A 2A

2A

e

2A =

2A =1A =

1A

1A =

A =

'A

e

Pipeline Combination

Figure 10: Pipeline combination example.

pushes u1 items for every o1 items that it pops, λe
1 pushes

chanPeek ∗ u1 for every chanPop ∗ o1 that it pops. When
chanPeek > chanPop, this means that the outputs of λe

1

are overlapping, and chanPeek − chanPop items are being
regenerated on every firing.

Note that although λe
1 performs duplicate computations

in the case where λ2 is peeking, this computation cost can
be amortized by increasing the value of chanPop. That is,
though the equations set chanPop as the least common mul-
tiple of u1 and o2, any common multiple is legal. As chanPop
grows, the regenerated portion chanPeek−chanPop becomes
smaller on a percentage basis.

It is the case that some collapsed linear nodes are always
less efficient than the original pipeline sequence. The worst
case is when Ae

1 is a column vector and Ae
2 is a row vec-

tor, which requires O(N) operations originally but O(N 2)
operations if combined (assuming vectors of length N). To
avoid such performance-degrading combinations, we employ
an automated selection algorithm that only performs bene-
ficial transformations (see Section 6).

Figure 10 illustrates the combination of back to back FIR
filters. Since the push rate of the first filter (u1 = 1) differs
from the peek rate of the second (e2 = 3), the first filter must
be expanded to λe

1 = expand(λ1, 4, 1, 3). There is no need
to expand the second filter, so λe

2 = λ2. By construction,
we can now form the matrix product of Ae

1 and Ae
2, which

corresponds to the matrix for the overall linear node.

4.3 Collapsing Linear SplitJoins
The splitjoin construct allows the StreamIt programmer

to express explicitly parallel computations. Data elements
that arrive at the splitjoin are directed to the parallel child
streams using one of two pre-defined splitter constructs: 1)
duplicate, which sends a copy of each data item to all of the
child streams, and 2) roundrobin, which distributes items
cyclically according to an array of weights. The data from
the parallel streams are combined back into a single stream
by means of a roundrobin joiner with an array of weights
w. First, w0 items from the leftmost child are placed onto

the overall output tape, then w1 elements from the second
leftmost child are used, and so on. The process repeats itself
after � n−1

i=0 wi elements has been pushed.
In this section, we demonstrate how to collapse a splitjoin

into a single linear node when all of its children are linear
nodes. Since the children of splitjoins in StreamIt can be
parameterized, it is often the case that all sibling streams
are linear if any one of them is linear. However, if a splitjoin
contains only a few adjacent streams that are linear, then
these streams can be combined by wrapping them in a hi-
erarchical splitjoin and then collapsing the wrapper com-
pletely. Our technique also assumes that each splitjoin ad-
mits a valid steady-state schedule; this property is verified
by the StreamIt semantic checker.

Our analysis distinguishes between two cases. For dupli-
cate splitters, we directly construct a linear node from the
child streams. For roundrobin splitters, we first convert to
a duplicate splitter and then rely on the transformation for
duplicate splitters. We describe these translations below.

4.3.1 Duplicate Splitter
Intuitively, there are three main steps to combining a

duplicate splitjoin into a linear node. Since the combined
node will represent a steady-state execution of the splitjoin
construct, we first expand each child node according to its
multiplicity in the schedule. Secondly, we ensure that each
child’s matrix representation has the same number of rows—
that is, that each child peeks at the same number of items.
Once these conditions are satisfied, we can construct a ma-
trix representation for the splitjoin by simply arranging the
columns from child streams in the order specified by the
joiner. Reordering columns is equivalent because with a du-
plicate splitter, each row of a child’s linear representation
refers to the same input element of the splitjoin. The trans-
formation is described in mathematical terms below.

Transformation 3. (Duplicate splitjoin combination)
Given a splitjoin s containing a duplicate splitter, children
that are linear nodes λ0 . . . λn−1, and a roundrobin joiner
with weights w0 . . . wn−1, the combination splitjoin(s) =

{A′, ~b′, e′, o′, u′} represents an equivalent node that can
replace the entire stream s. Its components are as follows:

joinRep = lcm(lcm(u0,w0)
w0

, . . . ,
lcm(un−1,wn−1)

wn−1
)

maxPeek = maxi(oi ∗ repi + ei − oi)

∀k ∈ [0, n − 1] :

wSumk = � k−1
i=0 wi

repk =
wk∗joinRep

uk

λe
k = expand(λk, maxPeek, ok ∗ repk, uk ∗ repk)

∀k ∈ [0, n − 1], ∀m ∈ [0, joinRep − 1], ∀p ∈ [0, uk − 1] :

A′[∗, u′ − 1 − p−m ∗ wSumn − wSumk] = Ae
k[∗, ue

k − 1− p]

~b′[u′ − 1− p−m ∗ wSumn − wSumk] = be
k[ue

k − 1 − p]

e′ = ee
0 = · · · = ee

n−1

o′ = oe
0 = · · · = oe

n−1

u′ = joinRep ∗ wSumn

The above formulation is derived as follows. The joinRep
variable represents how many cycles the joiner completes in
an execution of the splitjoin’s steady-state schedule; it is

w
n

w
n
w
n

w
2

w
2
w
2

w
1

w
1
w
1

A =1
e

A =2
e

A =n
e

A' =

Figure 11: Matrix resulting from combining a

splitjoin of rate-matched children.

the minimal number of cycles required for each child node
to execute an integral number of times and for all of their
output to be consumed by the joiner. Similarly, repk gives
the execution count for child k in the steady state. Then,
in keeping with the procedure described above, λe

k is the
expansion of the kth node by a factor of repk, with the peek
value set to the maximum peek across all of the expanded
children. Following the expansion, each λe

i has the same
number of rows, as the peek uniformization causes shorter
matrices to be padded with rows of zeros at the top.

The final phase of the transformation is to re-arrange
the columns of the child matrices into the columns of A′

and ~b′ such that they generate the correct order of outputs.
Though the equations are somewhat cumbersome, the con-
cept is simple (see Figure 11): for the kth child and the mth
cycle of the joiner, the pth item that is pushed by child k
will appear at a certain location on the joiner’s output tape.
This location (relative to the start of the node’s execution)
is p + m ∗ wSumn + wSumk, as the reader can verify. But
since the right-most column of each array A holds the for-
mula to compute the first item pushed, we need to subtract
this location from the width of A when we are re-arranging
the columns. The width of A is the total number of items
pushed—u′ in the case of A′ and ue

k in the case of Ae
k. Hence

the equation as written above: we copy all items in a given
column from Ae

k to A′, defining each location in A′ exactly

once. The procedure for ~b is analogous.
It remains to calculate the peek, pop and push rates of the

combined node. The peek rate e′ is simply maxPeek, which
we defined to be equivalent for all the expanded child nodes.
The push rate joinRep ∗wSumn is equivalent to the number
of items processed through the joiner in one steady-state
execution. Finally, for the pop rate we rely on the fact that
the splitjoin is well-formed and admits a schedule in which
no buffer grows without bound. If this is the case, then the
pop rates must be equivalent for all the expanded streams;
otherwise, some outputs of the splitter would accumulate
infinitely on the input channel of some stream.

These input and output rates, in combination with the

values of A′ and ~b′, define a linear node that exactly rep-
resents the parallel combination of linear child nodes fed
with a duplicate splitter. Figure 12 provides an example of
splitjoin combination.

4.3.2 Roundrobin Splitter
In the case of a roundrobin splitter, items are directed to

each child stream si according to weight vi: the first v0 items
are sent to s0, the next v1 items are sent to s1, and so on.
Since a child never sees the items that are sent to sibling

streams, the items that are seen by a given child form a
periodic but non-contiguous segment of the splitjoin’s input
tape. Thus, in collapsing the splitjoin, we are unable to
directly use the columns of child matrices as we did with
a duplicate splitter, since with a roundrobin splitter these
matrices are operating on disjoint sections of the input.

Instead, we collapse linear splitjoins with a roundrobin
splitter by converting the splitjoin to use a duplicate splitter.
In order to maintain correctness, we add a decimator on
each branch of the splitjoin that eliminates items which were
intended for other streams.

Transformation 4. (Roundrobin to duplicate) Given a
splitjoin s containing a roundrobin splitter with weights v0 . . .
vn−1, children that are linear nodes λ0 . . . λn−1, and a round-
robin joiner j, the transformed rr-to-dup(s) is a splitjoin
with a duplicate splitter, linear child nodes λ′

0 . . . λ′
n−1, and

roundrobin joiner j. The child nodes are computed as fol-
lows:

vSumk = � k−1
i=0 vi

vTot = vSumn

∀k ∈ [0, n − 1] :

decimate[k] is a linear node {A,~0, vTot, vTot, vk}

where A[i, j] = � 1 if i = vTot − vSumk+1 + j
0 otherwise

λ′
k = pipeline(decimate[k], λk)

In the above translation, we utilize the linear pipeline
combinator pipeline to construct each new child node λe

i

as a composition of a decimator and the original node λi.
The kth decimator consists of a vTot × vk matrix that con-
sumes vTot items, which is the number of items processed
in one cycle of the roundrobin splitter. The vk items that
are intended for stream k are copied with a coefficient of 1,
while all others are eliminated with a coefficient of 0.

4.4 Applications of Linear Combination
There are numerous instances where the linear combina-

tion transformation could benefit a programmer. For exam-
ple, although a bandpass filter can be implemented with a
low pass filter followed by a high pass filter, actual imple-
mentations determine the coefficients of a single combined
filter that performs the same computation. While a simple
bandpass filter is easy to combine manually, in an actual
system several different filters might be designed and imple-
mented by several different engineers, making overall filter
combination infeasible.

Another common operation in discrete time signal pro-
cessing is downsampling to reduce the computational re-
quirements of a system. Downsampling is most often im-
plemented as a low pass filter followed by an M compres-
sor which passes every Mth input item to the output. In
practice, the filters are combined to avoid computing dead
items in the low pass filter. However, the system specifica-
tion contains both elements for the sake of understanding.
Our analysis can start with the specification and derive the
efficient version automatically.

A final example is a multi-band equalizer, in which N dif-
ferent frequency bands are filtered in parallel (see our FM-
Radio benchmark). If these filters are time invariant, then
they can be collapsed into a single node. However, design-
ing this single overall filter is difficult, and any subsequent

[]9
[]10

{ , ,1,1,1}λ2= 2A 2b

2b =

2A =

[]1 2 3 4

5 6 7 8

{ ,0,2,2,4}λ1 1= A

1A =

duplicate

duplicate

roundrobin(2,1)

roundrobin(2,1)

[]10 102b =

2A =[] []1 2 3 4

5 6 7 8

9

0

0

9

e

e

e

{ ,0,2,2,4}λ1 1= A

1A =

e
{ , ,2,2,2}λ2= 2A 2b

ee

e

e

{ , ,2,2,6} '

'

'

λ =

A =

' 'A

[]10 0 0 0 010b =

[]1

5

2

6

0

9

3

7

4

8

9

0

b

Linear Expansion

Splitjoin Combination

Figure 12: Splitjoin combination example.

changes to any one of the sub filters will necessitate a total
redesign of the filter. With our automated combination pro-
cess, any subsequent design changes will necessitate only a
recompile rather than a manual redesign.

5. TRANSLATION TO FREQUENCY
In this section, we demonstrate how we can leverage our

linear representation to automatically perform a common
domain-specific optimization: translation to the frequency
domain. First, we show that a linear node is equivalent
to a set of convolution sums, which can benefit from algo-
rithmic gains if performed in frequency rather than time.
We then present an optimized code generation strategy for
transforming linear nodes to frequency.

5.1 Basic Frequency Implementation
Our first goal is to show that the computation of a linear

node can be represented as a convolution sum. Consider
executing m iterations of a linear node λ = {A,~0, e, 1, 1}—

that is, a node with ~b = ~0 and push = pop = 1 (these

assumptions will be relaxed below). Let ~out[i] represent the

ith value that is pushed during execution, let ~in[i] hold the
value of peek(i) as seen before the execution begins, and
let ~y be the convolution of the only column of A with the
vector ~in (that is, ~y = A[∗, 0] ∗ ~in). Note that ~out is an

m-element vector, A[∗, 0] is an e-element vector, ~in is an
(m+ e−1)-element vector, and ~y is an (m+2e−2)-element
vector.

Then, we make the following claim:

∀i ∈ [0, m− 1] : ~out[i] = ~y [i + e− 1] (1)

To see that this is true, recall the definition of convolution:

~y [i] = A[i, 0] ∗ ~in[i] =
∞�

k=−∞

A[k, 0]~in[i− k]

Substituting ~in by its definition, and restricting k to range
over the valid rows of A, we have:

~y [i] =

e−1�

k=0

A[k, 0]peek(i− k)

Remapping the index i to i + e − 1 makes the right hand
side equivalent to ~out[i], by Definition 1. Claim 1 follows.

In other words, values pushed by a linear node can be
calculated by a convolution of the input tape with the co-
efficients A. The significance of this fact is that a convolu-
tion operation can be implemented very efficiently by using
the Fast Fourier Transform (FFT) to translate into the fre-
quency domain. To compute the convolution, the N -point
FFTs of ~in and A[∗, 0] are calculated to obtain ~X and ~H,
respectively, each of which is a complex-valued vector of
length N . Element-wise multiplication of ~X and ~H yields a
vector ~Y , to which the inverse transform (IFFT) is applied
to obtain ~y. Convolution in the frequency domain requires
O(N lg(N)) operations, as each FFT and IFFT has a cost
of O(N lg(N)) and the vector multiplication is O(N). By
contrast, the complexity is O(N2) in the time domain, as
each of the N output values requires O(N) operations. For
more details, refer to [15].

We can use the procedure described above to implement
a linear node in the frequency domain. We simply calculate
~y = A[∗, 0]∗~in, and extract values ~y [e−1] . . . ~y [m+(e−1)−1]
as the m values pushed by the node. Note that ~y [i] is also
defined for i ∈ [0, e−2] and i ∈ [m+ e−1,m+2e−2]; these
values represent partial sums in which some coefficients were
excluded. Our näıve implementation simply disregards these
values. However, in the next section, we give an optimized
implementation that takes advantage of them.

The only task remaining for the implementation is to
choose N , the FFT size, and m, the number of iterations
to execute at once in the frequency domain. According to
Fourier’s theorem, an N -point FFT can exactly represent
any discrete sequence of N numbers, so the only constraint
on N and m is that N ≥ m + 2e− 1. For performance rea-
sons, N should be a power of two and as large as possible. In
our implementation, we set N to the first power of two that
is greater than or equal to 2e, and then set m = N − 2e+1.
This strikes a reasonable compromise between storage space
and performance for our uniprocessor benchmarking plat-
form; the choice of N should be adjusted for the particular
resource constraints of the target architecture.

The transformation below gives a näıve translation of a
linear node to the frequency domain. In addition, it relaxes

all of the assumptions that we made above. The algorithm

allows for a non-zero value of ~b by simply adding ~b after
returning from the frequency domain. To accommodate a
push rate greater than one, the algorithm generates matri-
ces for ~Y and ~y and alternates pushing values from each
column of ~y in turn. Finally, to accommodate a pop rate
greater than one, the algorithm proceeds as if the pop rate
was one and adds a special decimator node that discards the
extra outputs. Though this introduces inefficiency by calcu-
lating values that are never used, it still leaves room for large
performance improvements, as the frequency transformation
can improve performance by a large factor (see Section 7).

Transformation 5. (Näıve frequency implementation)

Given a linear node λ = {A,~b, e, o, u}, the following stream
is a näıve implementation of λ in the frequency domain:

float→ float pipeline naiveFreq (A,~b, e, o, u) {
add float→ float filter {

N ← 2dlg(2e)e

m← N − 2e + 1

init {
for j = 0 to u− 1

~H[∗, j]← FFT(N, A[∗, u− 1− j])
}

work peek m + e− 1 pop m push u ∗m {
~x← peek(0 . . . m + e− 2)
~X ← FFT(N, ~x)
for j = 0 to u− 1 {

~Y [∗, j]← ~X. ∗ ~H[∗, j]

~y [∗, j]← IFFT(N, ~Y [∗, j])
}
for i = 0 to m− 1 {
pop()
for j = 0 to u− 1

push(~y [i + e− 1, j] +~b[j])
}
}
}
add FreqDecimator(o, u)
}

float→ float filter freqDecimator (o, u) {
work peek u ∗ o pop u ∗ o push u {
for i = 0 to u− 1
push(pop())

for i = 0 to u− 1
for j = 0 to o− 2
pop()

}
}

5.2 Optimized Frequency Implementation
The näıve frequency implementation discards e − 1 ele-

ments from the beginning and end of each column of ~y that
it computes. These values represent partial sums in which
some of the coefficients of A are excluded. However, for
i ∈ [0, e − 2], ~y [i, j] in one iteration contains the missing
terms from ~y [m + e− 1 + i, j] in the previous iteration. The
sum of these two elements gives a valid output for the fil-
ter. This symmetry arises from the convolution of A “off
the edges” of the input block that we consider in a given
iteration. Reusing the partial sums—which is exploited in
the transformation below—is one of several methods that
use blocking to efficiently convolve a short filter with a large
amount of input [15].

Transformation 6. (Optimized frequency implementa-

tion) Given a linear node λ = {A,~b, e, o, u}, the following
stream is an optimized implementation of λ in the frequency
domain:

float→ float pipeline optimizedFreq (A,~b, e, o, u) {
add float→ float filter {

N ← 2dlg(2e)e

m← N − 2e + 1
~partials← new array[0 . . . e− 2, 0 . . . u− 1]

r← m + e− 1

init {
for j = 0 to u− 1

~H[∗, j]← FFT(N,A[∗, u− 1− j])
}

prework peek r pop r push u ∗m {
~x← pop(0 . . . m + e− 2)
~X ← FFT(N, ~x)
for j = 0 to u− 1 {

~Y [∗, j]← ~X. ∗ ~H[∗, j]

~y[∗, j]← IFFT(N, ~Y [∗, j])
~partials[∗, j]← ~y [m + e− 1 . . .m + 2e− 3, j]

}
for i = 0 to m− 1
for j = 0 to u− 1

push(~y [i + e− 1, j] +~b[j])
}

work peek r pop r push u ∗ r {
~x← pop(0 . . . m + e− 2)
~X ← FFT(N, ~x)
for j = 0 to u− 1 {

~Y [∗, j]← ~X. ∗ ~H[∗, j]

~y[∗, j]← IFFT(N, ~Y [∗, j])
}
for i = 0 to e− 1
for j = 0 to u− 1 {

push(~y [i, j] + ~partials[i, j])
~partials[i, j]← ~y [m + e− 1 + i, j]

}
for i = 0 to m− 1
for j = 0 to u− 1

push(~y [i + e− 1, j] +~b[j])
}
}
add Decimator(o, u) // see Transformation 5
}

5.3 Applications of Frequency Transformation
The transformation to the frequency domain is straight-

forward in theory and very common in practice. However,
the detailed record keeping, transform size selection, and
state management make an actual implementation quite in-
volved. Further, as the complexity of DSP programs con-
tinues to grow, manually determining the disparate regions
across which to apply this optimization is an ever more
daunting task. For example, several filters individually may
not perform sufficiently large convolutions to merit a fre-
quency transformation, but after a linear combination of
multiple filters the transformation could be beneficial. Dif-
fering levels of architectural support for various convolu-
tion and frequency operations further complicates the task
of choosing the best transform. Our compiler automatically
determines all the necessary information and transforms the
computation into the frequency domain.

6. OPTIMIZATION SELECTION
To reap the maximum benefit from the optimizations de-

scribed in the previous two sections, it is important to apply
them selectively. There are two components of the optimiza-
tion selection problem: first, to determine the sequence of
optimizations that will give the highest performance for a
given arrangement of the stream graph, and second, to de-
termine the arrangement of the stream graph that will give
the highest performance overall. In this section, we explain
the relevance of each of these problems, and we present an
effective selection algorithm that relies on dynamic program-
ming to quickly explore a large space of configurations.

6.1 The Selection Problem
First, the selection of optimizations for a given stream

graph can have a large impact on performance. As alluded
to in Section 4, linear combination can increase the num-
ber of arithmetic operations required, e.g., if combining a
two-element pipeline where the second filter pushes more
items than it peeks. However, such a combination might be
justified if it enables further combination with other compo-
nents and leads to a benefit overall. Another consideration
is that as the pop rate grows, the benefit of converting to
frequency diminishes; thus, it might be preferable to trans-
form smaller sections of the graph to frequency, or to per-
form linear combination only. This occurs in our Vocoder
and FMRadio benchmarks, in which the selection algorithm
improves performance by choosing plain linear combination
over frequency translation.

Second, the arrangement of the stream graph can dic-
tate which transformations are possible to apply. Since our
transformations operate on an entire pipeline or splitjoin
construct, the graph often needs to be refactored to put lin-
ear nodes in their own hierarchical unit. For example, in our
TargetDetect benchmark, we cut a splitjoin horizontally and
collapse the top piece before converting to the frequency do-
main, thereby amortizing the cost of the FFT on the input
items. In our Vocoder benchmark, we cut a splitjoin ver-
tically in order to separate the non-linear filters on the left
and combine all of the filters on the right into a single linear
node.

6.2 Dynamic Programming Solution
Our optimization selection algorithm, shown in Figures 13

and 14, automatically derives the example transformations
described above. Intuitively, the algorithm works by esti-
mating the minimum cost for each structure in the stream
graph. The minimum cost represents the best of three con-
figurations: 1) collapsed and implemented in the time do-
main, 2) collapsed and implemented in the frequency do-
main, and 3) uncollapsed and implemented as a hierarchical
unit. The cost functions for the collapsed cases are guided
by profiler feedback, as described below. For the uncollapsed
case, the cost is the sum of each child’s minimum cost. How-
ever, instead of considering the children directly, the children
are refactored into many different configurations, and the
cost is taken as the minimum over all configurations. This
allows the algorithm to simultaneously solve for the best set
of transformations and the best arrangement of the stream
graph.

The key to the algorithm’s efficiency is the manner in
which it considers refactoring the children of hierarchical
nodes. Instead of considering arbitrary arrangements of the

// types of transformations we consider for each stream

enum Transform { ANY, LINEAR, FREQ, NONE }

// a tuple representing a cost and a stream

struct Config {

int cost : cost of the configuration

 Stream str : Stream corresponding to the lowest cost

}

// a hierarchical stream element

struct Stream {

int height : number of rows in the container

int width[y] : number of columns in row y

int child[x, y] : child in position (x, y) [column x, row y]

}

Figure 13: Type declarations for code in Figure 14.

stream graph, it considers only rectangular partitions, in
which a given splitjoin is divided into two child splitjoins by
either a horizontal or vertical cut. This approach works well
in practice, because splitjoins often have symmetrical child
streams in which linear components can be separated by a
straight line. Moreover, as the child splitjoins are decom-
posed and evaluated, there are overlapping sub-problems
that enable us to search the space of child configurations
in polynomial time, using dynamic programming.

A subtlety in the pseudocode of Figure 14 is with regards
to the translation from a StreamIt graph to a set of hi-
erarchical Stream objects. In the pseudocode, each Stream

corresponds only to a pipeline; adjacent splitjoin objects are
wrapped in a pipeline and their children are considered as
direct children of the pipeline. This enables different parts
of neighboring splitjoins to be combined. However, it im-
plies that a Stream might have a different width at differ-
ent points (since neighboring splitjoins could have differing
widths); this necessitates the addition of the width array to
the algorithm.

6.3 Cost Functions
The pseudocode in Figure 14 refers to functions getDirect-

Cost and getFrequencyCost that estimate a node’s execution
time if implemented in the time domain or the frequency
domain. These cost functions can be tailored to a specific
architecture and code generation strategy. For example, if
there is architecture-level support for convolution operations
(such as the the FIRS instruction in the TMS320C54x [18]),
then this would effect the cost for certain dimensions of
matrices; similarly, if a matrix multiplication algorithm is
available that exploits symmetry or sparsity in a matrix,
then this benefit could be accounted for where it applies.
In our implementation, we use the following versions of the

cost functions (let λ = (A,~b, e, o, u) be the linear node cor-
responding to stream s):

getDirectCost(s) =

������� ������
∞ (if s is roundrobin splitjoin)

185 + 2 ∗ u + (otherwise)

|{i s.t. ~bi 6= 0}| +

3 ∗ |{(i, j) s.t. Ai,j 6= 0}|

getFrequencyCost(s) =�
185 + 2 ∗ u + u ∗ ln � 1 + 4 ∗ e

1 + 2dlg(2∗e)e

50 ��� ∗max(o, 1)+dec(s)

dec(s) = (o− 1) ∗ (185 + 4 ∗ u)

// global variable holding the lowest-cost Config for nodes

// (x1..x2, y1..y2) of Stream <s> if Transform <t> is applied

Config memoTable[s, t, x1, x2, y1, y2]

// given original Stream <s>, return optimized stream

Stream toplevel (Stream s)

 initialize all entries of memoTable to Config(-1, null)

return getCost(s, ANY).str

// returns lowest-cost Config for Stream <s> under Transform <t>

Config getCost (Stream s, Transform t)

if (t = ANY)

 c1 � getCost(s, LINEAR)

 c2 � getCost(s, FREQ)

 c3 � getCost(s, NONE)

 return ci s.t. ci.cost = min(c1.cost, c2.cost, c3.cost)

else if (s is Node) return getNodeCost(s, t)

else // s is Container

 maxWidth � max(s.width[0], ..., s.width[s.height-1])

 return getContainerCost(s, t, 0, maxWidth-1, 0, s.height-1)

// returns lowest-cost Config for Node <s> under Transform <t>

Config getNodeCost (Stream s, Transform t)

 // scale cost by the number of times <s> executes in the steady-state schedule

 scalingFactor � executionsPerSteadyState(s)

if (t = LINEAR)

 if (isLinear(s)) return Config(scalingFactor � getDirectCost(s),

 makeLinearImplementation(s))

 else return Config(� , s)

else if (t = FREQ)

 if (isLinear(s) 	 canConvertToFrequency(s))

 return Config(scalingFactor � getFrequencyCost(s),

 makeFreqImplementation(s))

 else return Config(� , s)

else // t = NONE

 if (isLinear(s)) return Config(scalingFactor � getDirectCost(s), s)

 else return Config(0, s) // don’t tally up costs of non-linear nodes

// returns lowest-cost Config for children (x1..x2, y1..y2) of <s> under <t>

Config getContainerCost (Stream s, Transform t, int x1, int x2, int y1, int y2)

 // if we've exceeded the width of this node, then trim down to actual width

 x2 � min (x2, max (width[y1], ..., width[y2]) - 1)

// if value is memoized, return it

if (memoTable[s, t, x1, x2, y1, y2]
 -1)

 return memoTable[s, t, x1, x2, y1, y2]

if (x1 = x2 	 y1 = y2) // if down to one child, descend into it

 result � getCost(s.child[x1, y1], t)

 // if the transform will collapse children, then treat them as a single node

if (t = LINEAR � t = FREQ)

 result � getNodeCost(extractSubstream(s, x1, x2, y1, y2), t)

if (t = NONE)

 result = Cost (� , s)

 // try horizontal cut

 for yPivot � y1 to y2-1 do

 // get cost of 2-element Pipeline; remember Config if it is best so far

 c1 � getCost(s, ANY, x1, x2, y1, yPivot)

 c2 � getCost(s, ANY, x1, x2, yPivot+1, y2)

 if (c1.cost + c2.cost < result.cost)

 result � Config(c1.cost+c2.cost, Pipeline(c1.str, c2.str))

 // can only do vertical cut if all child streams belong to same splitjoin

 if (sameSplitJoinParent(s.child[x1, y1], s.child[x2, y2]))

 for xPivot = x1 to x2-1 do

 // get cost of 2-element SplitJoin; remember Config if it is best so far

 c1 � getCost(s, ANY, x1, xPivot, y1, y2)

 c2 � getCost(s, ANY, xPivot+1, x2, y1, y2)

 if (c1.cost + c2.cost < result.cost)

 result � Config(c1.cost+c2.cost, SplitJoin(c1.str,c2.str))

 memoTable[s, t, x1, x2, y1, y2] � result

return result

Figure 14: Algorithm for optimization selection.

Originally After Optimizations
Benchmark Filters Pipelines SplitJoins Average Filters Pipelines SplitJoins

(linear) (linear) (linear) vector size
FIR 3 (1) 1(0) 0 (0) 256 3 1 0
RateConvert 5 (3) 2 (1) 0 (0) 102 4 1 0
TargetDetect 10 (4) 6 (0) 1 (0) 300 7 1 1
FMRadio 26 (22) 11 (9) 2 (2) 40 5 1 0
Radar 76 (60) 17 (0) 2 (0) 4412 38 17 2
FilterBank 27 (24) 17 (9) 4 (4) 52 3 1 0
Vocoder 17 (13) 10 (8) 2 (1) 60 6 2 1
Oversampler 10 (8) 1 (1) 0 (0) 33 3 1 0
DToA 14 (10) 3 (1) 0 (0) 52 7 2 0

Table 1: Characteristics of benchmarks before and after running optimizations with automatic selection.

For the direct cost, we consider the cost to be infinite
for splitjoins with roundrobin splitters. This is because the
splitjoin combination does not eliminate any arithmetic op-
erations, and for the roundrobin case it introduces extra
overhead (the duplicate case is different because the input
items are shared between streams). For other streams, we
count the number of multiplies and adds required to per-
form the matrix multiplication, giving more weight to the
multiplies since they are more expensive. We do not count
the zero entries of the arrays, since our matrix multiply rou-
tines take advantage of the sparsity of the matrix. We add
185 + 2 ∗ u to all costs as a measure of the overhead of the
node’s execution.

For the frequency cost, our cost curve is guided by pro-
filer feedback. The speedup gained by translating to the
frequency domain depends on the peek rate of the filter.
To obtain an n-fold speedup of the frequency code over the
direct code, the filter has to peek 64 ∗ n items. Mathemati-
cally, this translates to a logarithmic expression for the cost
of the frequency node in terms of the number of items e (we
actually use the next power of two above e, as that is the
size of the FFT). We multiply the above cost by the number
of items pushed, add the constant offset of 185 + 2 ∗ u for
a node, and then multiply by max(o, 1) because only one
out of o items represents a valid output from the frequency
domain. Finally, we add dec(s), the cost of the decimator
for the frequency node. We estimate an extra cost of 2 per
push operation in the decimator, as it must read from the
input tape. The other pop operations in the decimator are
free, because they can be performed as a single adjustment
of the tape position.

Of course, both cost functions are undefined if s is non-
linear (i.e., if there is no corresponding λs). If this is the
case, then the selection algorithm assigns an infinite cost.

7. RESULTS
We have completed a fully automatic implementation of

the linear combination, frequency replacement, and opti-
mization selection algorithms described in the previous sec-
tions. The implementation is part of the StreamIt compiler,
and works for both the uniprocessor and Raw [13] backends.
In this section, we evaluate three configurations of linear op-
timizations for the uniprocessor backend:

• Linear replacement, which transforms maximal linear
sections of the stream graph into a single linear node,
which we implement as a matrix multiply. For small
nodes (less than 256 operations), this takes the form
of an unrolled arithmetic expression, whereas for large
nodes we implement an indexed matrix multiply that

avoids zero entries at the top and bottom of each col-
umn.

• Frequency replacement, which transforms maximal lin-
ear sections of the stream graph into a single node in
the frequency domain. To implement the necessary ba-
sis conversions, we use FFTW [5], which is an adaptive
and high-performance FFT library.

• Automatic selection, which employs both of the previ-
ous transformations judiciously in order to obtain the
maximal benefit. This works according to the algo-
rithm in Section 6.

Below we describe experiments and results that demonstrate
substantial performance improvements due to our methods.
For full results, stream graphs, and source code, please visit
http://cag.lcs.mit.edu/linear/.

7.1 Measurement Methodology
Our measurement platform is a Dual Intel P4 Xeon sys-

tem with 2GB of memory running GNU/Linux. We compile
our benchmarks using StreamIt’s uniprocessor backend and
generate executables from the resulting C files using gcc

-O2. To measure the number of floating point operations,
we use an instruction counting DynamoRIO[1] client.

Since StreamIt is a new language, there are no external
sources of benchmarks. Thus, we have assembled the fol-
lowing set of representative streaming components and have
rewritten them in StreamIt: 1) FIR, a single 256 point
low pass FIR filter; 2) RateConvert, an audio down sam-
pler that converts the sampling rate by a non-integral factor
(2
3
); 3) TargetDetect, four matched filters in parallel with

threshold target detection; 4) FMRadio, an FM software
radio with equalizer; 5) Radar, the core functionality in
modern radar signal processors, based on a system from the
Polymorphic Computing Architecture [12]; 6) FilterBank,
a multi-rate signal decomposition processing block common
in communications and image processing; 7) Vocoder, a
channel voice coder, commonly used for speech analysis and
compression; 8) Oversampler, a 16x oversampler, a func-
tion found in many CD players, 9) DToA, an audio post-
processing stage prior to a 1-bit D/A converter with an over-
sampler and a first order noise shaper.

Some statistics on our benchmarks appear in Table 1.

7.2 Performance
One interesting aspect of our optimizations is that they

eliminate floating point operations (FLOPS) from the pro-
gram, as shown in Figure 15. The removal of FLOPS rep-
resents fundamental computation savings that is indepen-

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Benchmark

F
L

O
P

S
 r
e
m

o
v
e

d

linear

freq

autosel

� � �

R
at
eC
on
v�
� t�
�

T
� � get

D
et
ec
t

FM
R
ad
io

R
ad
� �

-3200%

F
� � t�
� b
� � k

V
oc
od�
�

O
v�
� sa
	�
 � �

�
� oA

Figure 15: Elimination of floating point operations

by maximal linear replacement, maximal frequency

replacement, and automatic optimization selection.

dent of the streaming runtime system and other (FLOPS-
preserving) optimizations in the compiler. As shown in the
figure, each optimization leads to a significant reduction of
FLOPS. Linear replacement eliminates FLOPS for all except
for FIR, TargetDetect, and Radar, while frequency replace-
ment eliminates FLOPS for all except for Radar.

The automatic selection option eliminates more FLOPS
than either of the other options for TargetDetect, FMRadio,
Radar, and Vocoder. The effect is especially pronounced
in Radar, where linear and frequency replacement increase
the number of FLOPS, but automatic selection decreases
FLOPS; the selection algorithm chooses to combine only
some of the filters in Radar, transforming none to the fre-
quency domain. Automatic selection always performs at
least as well as the other two options, which implies that
our cost functions have some level of accuracy.

Execution speedups are shown in Figure 16. With au-
tomatic selection, our benchmarks speed up by an average
factor of 450% and by a factor of 800% in the best case.
While the graph suggests that frequency replacement al-
most always performs better than linear replacement, this is
not strictly the case; in FMRadio, Radar, and Vocoder, the
automatic selection algorithm obtains its speedup by using
linear replacement instead of frequency replacement for part
of the stream graph. However, linear replacement does re-
duce performance for FIR, TargetDetect, and DToA despite
reducing the number of FLOPS. We believe that this is due
to inefficiencies in our implementation of the matrix multi-
plication routine, as well as auxiliary effects on the runtime
overhead in the StreamIt library. We have experimented
with using the machine-tuned ATLAS library for the ma-
trix multiply [20], but performance varies widely: linear re-
placement with ATLAS performs anywhere from -36% (on
FMRadio) to 58% (on Oversampler) better than it does with
our own matrix multiply routine, and average performance
with ATLAS is 4.3% lower. Note that these numbers re-
flect our overhead in interfacing with ATLAS rather than
the performance of ATLAS itself. In the future, we plan to
further investigate how best to perform the matrix multiply.

Perhaps the most interesting benchmark is Radar2. Max-

2This is the same Radar application as in [7], with some filters
adjusted to work at a coarser level of granularity. This elimi-
nates persistent state in exchange for increased I/O rates. Also,

-200%

-100%

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

Benchmark

S
p
e
e
d
u
p � � � �����

freq

autosel

� � �

R
at
eC
on
v�
� t�
�

T
� � get

D
et
ec
t

FM
R
ad
io

R
ad
� �

F
� � t�
� b
� � k

V
oc
od�
�

O
v�
� sa
��� � �

�
 ! oA

5%

Figure 16: Execution speedup for maximal linear

replacement, maximal frequency replacement, and

automatic optimization selection.

imal linear and frequency replacement lead to abysmal per-
formance on Radar, due to a vector-vector multiply filter
named “Beamform” at the top of a pipeline construct. The
Beamform filter pushes 2 items, but pops and peeks 24; thus,
when the replacement algorithms combine it with a down-
stream FIR filter, much of its work is duplicated. Moreover,
the frequency replacement option suffers from the large pop
rates in the application (as high as 128 for some filters),
thereby increasing FLOPS and execution time by more than
a factor of 30. The automatic selection algorithm is essential
in this case: it averts the performance-degrading combina-
tions and benefits from linear combinations elsewhere in the
program, resulting in a significant reduction in FLOPS and
a 5% performance gain.

8. RELATED WORK
Several groups are researching strategies for efficient code

generation for DSP applications. SPIRAL is a system that
generates libraries for signal processing algorithms[8, 9, 4].
Using a feedback-directed search process, DSP transforms
are optimized for the underlying architecture. The input
language to SPIRAL is SPL[22, 21], which provides a param-
eterizable way of expressing matrix computations. Given a
matrix representation in SPL, SPIRAL generates formulas
that correspond to different factorizations of the matrix. It
searches for the most efficient formula using several tech-
niques, including dynamic programming and stochastic evo-
lutionary search.

We consider our work to be complementary to SPIRAL.
While SPIRAL starts with a matrix representation in SPL,
we start with general StreamIt code and use linear dataflow
analysis to extract a matrix representation where possible.
Our linear combination rules are distinct from the factor-
izations of SPIRAL, as StreamIt nodes can peek at items
that they do not consume. In the future, SPIRAL could be
integrated with StreamIt to optimize a matrix factorization
for a given architecture.

The ATLAS project [20] also aims to produce fast libraries
for linear algebra manipulations, focusing on adaptive li-
brary generation for varying architectures. FFTW [5] is
a runtime library of highly optimized FFT’s that dynam-

frequency replacement caused an internal error in gcc for this
program, so we used egcs 2.91 instead.

ically adapt to architectural variations. StreamIt is again
complementary to these packages: it allows programmers to
interface with them using general user-level code.

ADE (A Design Environment) is a system for specify-
ing, analyzing, and manipulating DSP algorithms [3]. ADE
includes a rule-based system that can search for improved
arrangements of stream algorithms using extensible trans-
formation rules. However, the system uses predefined signal
processing blocks that are specified in mathematical terms,
rather than the user-specified imperative code that appears
in a StreamIt filter. Moreover, ADE is intended for algo-
rithm exploration, while StreamIt includes support for code
generation and whole-program development. In addition to
ADE, other work on DSP algorithm development is surveyed
in [14].

Karr [11] and Cousot and Halbwachs [2] describe general
methods for detecting linear relationships among program
variables. Karr maintains an affine representation (simi-
lar to ours) for each program variable, while Cousot and
Halbwachs use a polyhedral model in which each dimen-
sion corresponds to a program variable. For general pro-
grams, the analyses described by these authors is more gen-
eral than ours. In fact, the novelty of our linear dataflow
analysis is in its specialization for the streaming domain.
Rather than tracking general relationships, we only track
relationships to items on the input tape. This restriction—
in combination with the atomic, fine-grained nature of filter
work functions—makes it feasible to symbolically execute all
loops, thereby obtaining more precise linearity information.

A number of other programming languages are oriented
around a notion of a stream; see [17] for a survey. Also
note that the “linear data flow analysis” of Ryan [16] is
completely unrelated to our work; it aims to do program
analysis in linear time.

9. CONCLUSION
This paper presents a set of automated analyses for de-

tecting, analyzing, and optimizing linear filters in streaming
applications. Though the mathematical optimization of lin-
ear filters has been a longtime focus of the DSP community,
our techniques are novel in the automated application of
these techniques to programs that are written in a flexible
and high-level programming language. We demonstrate that
using our linear dataflow analysis, linear combination, fre-
quency translation and automated optimization selection we
can improve execution speed by an average factor of 450%.

The ominous rift between the design and implementation
of signal processing applications is growing by the day. Algo-
rithms are designed at a conceptual level utilizing modular
processing blocks that naturally express the computation.
However, in order to obtain good performance, each hand-
tuned implementation is forced to disregard the abstraction
layers and painstakingly consider specialized whole-program
optimizations. The StreamIt project aims to reduce this
process to a single stage in which the designers and imple-
mentors share a set of high-level abstractions that can be
efficiently handled by the compiler.

The linear analysis described in this paper represents a
first step toward this goal. By automatically performing
linear combination, frequency translation, and optimization
selection, it allows programmers to write linear stream op-
erations in a natural and modular fashion without any per-
formance penalty.

10. ACKNOWLEDGEMENTS
We are very grateful to David Maze, Michal Karczmarek,

Jasper Lin, and Michael Gordon for extensive support with
the StreamIt infrastructure, and to Alex Salcianu for his
helpful comments. The StreamIt project is supported by
DARPA, NSF, and the MIT Oxygen Alliance.

11. REFERENCES
[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A

transparent dynamic optimization system. In PLDI, 1999.

[2] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In POPL, 1978.

[3] M. M. Covell. An Algorithm Design Environment for
Signal Processing. PhD thesis, MIT, 1989.

[4] S. Egner, J. Johnson, D. Padua, M. Püschel, and J. Xiong.
Automatic derivation and implementation of signal
processing algorithms. SIGSAM Bulletin, 35(2):1–19, 2001.

[5] M. Frigo. A Fast Fourier Transform Compiler. In PLDI,
1999.

[6] M. Gordon. A stream-aware compiler for
communication-exposed architectures. Master’s thesis, MIT
Laboratory for Computer Science, August 2002.

[7] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli,
A. A. Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze,
and S. Amarasinghe. A Stream Compiler for
Communication-Exposed Architectures. ASPLOS, 2002.

[8] J. Johnson, R. W. Johnson, D. A. Padua, and J. Xiong.
SPIRAL Home Page. http://www.ece.cmu.edu/~spiral/.

[9] J. Johnson, R. W. Johnson, D. A. Padua, and J. Xiong.
Searching for the best FFT formulas with the SPL
compiler. LNCS, 2017, 2001.

[10] M. A. Karczmarek. Constrained and phased scheduling of
synchronous data flow graphs for the streamit language.
Master’s thesis, MIT LCS, October 2002.

[11] M. Karr. Affine relationships among variables of a program.
Acta Informatica, pages 133–155, 1976.

[12] J. Lebak. Polymorphous Computing Architecture (PCA)
Example Applications and Description. External Report,
Lincoln Laboratory, Mass. Inst. of Technology, 2001.

[13] M.B. Taylor et. al . The raw microprocessor: a
computational fabric for software circuits and
general-purpose programs. IEEE Micro, 22(2):25–35,
March/April 2002.

[14] A. V. Oppenheim and S. H. Nawab, editors. Symbolic and
Knowledge-Based Signal Processing. Prentice Hall, 1992.

[15] A. V. Oppenheim, R. W. Shafer, and J. R. Buck.
Discrete-Time Signal Processing. Prentice Hall, second
edition, 1999.

[16] S. Ryan. Linear data flow analysis. ACM SIGPLAN
Notices, 27(4):59–67, 1992.

[17] R. Stephens. A Survey of Stream Processing. Acta
Informatica, 34(7), 1997.

[18] Texas Instruments. TMS320C54x DSP Reference Set,
volume 2: Mnemonic Instruction Set. 2001.

[19] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt:
A Language for Streaming Applications. In Proc. of the
Int. Conf. on Compiler Construction (CC), 2002.

[20] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated
empirical optimizations of software and the ATLAS
project. Parallel Computing, 27(1–2):3–35, 2001.

[21] J. Xiong. Automatic Optimization of DSP Algorithms.
PhD thesis, Univ. of Illinois at Urbana-Champaign, 2001.

[22] J. Xiong, J. Johnson, R. W. Johnson, and D. A. Padua.
SPL: A language and compiler for DSP algorithms. In
PLDI, 2001.

