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Introduction

Overview
Figure: 1: VTTS in the Real World

The Visual Target Tracking System (VTTS) is a system for visually tracking targets using a
bal mounted camera and digital control circuitry. A small black and white camera is mounted
stand that can be moved with two directions of freedom. When an object is placed in the cam
field of view, the camera moves such that the object becomes centered in the camera’s fiel
view. The camera’s progress is monitored by a Television monitor which will display both a
ter square and a crosshair overlay on the center of the object. Figure 1 shows how the VTT
connected to the real world.

System Decomposition
The VTTS was broken into four distinct modules, the digitizer, target detection, the output u
and the camera control. Figure 2 shows a schematic diagram of how the system was modul

camera

Visual Target
Tracking System
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movable camera
stand monitor
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Figure: 2: System Modularization

Digitizer-Analog (Andrew Lamb)

Overview
Figure: 3: System diagram of the Digitizer

The digitizer takes an NTSC video signal from a standard video camera and presents a 64
pixel grid of black and white pixels for output and image detection. The digitizer outputs a 7 b
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address, a 6 bit Y address line, a data line and communication signals data_available and 
Figure 3 shows a system diagram of the digitizer.

The astute reader will realize that to address a 64x64 grid only 6 X address bits are require
original design called for 192x128 (8 bits X, 7 bits Y) resolution, but as details about impleme
tion became clearer the resolution was dropped to 64x64, yet the digitizer’s design is capa
capturing the full 192x128 pixels. Unfortunately, much of the digitizer’s complexity is due to
fact that it is capable of capturing in 192x128 mode, even when a lower resolution was fina
used in the project. Internally, the digitizer still creates a 128x64 pixel grid, and the low X add
bit is ignored by the other modules.

Inter-kit Communications
Figure: 4: Timing of digitizer data and control signals

The digitizer generates two communication signals in addition to the pixel address and dat
wait signal is high while the digitizer is buffering the next NTSC frame from the camera. Wh
the wait signal is high, the other kits can perform the computation necessary for image dete
and crosshair overlay. When the wait signal goes low, new data and address information is
To signal that the data and address lines contain valid information, the data_available signa
brought high. The digitizer keeps the address and data lines stable while data_available is 
Figure 4 shows a timing diagram for inter-kit communication.

Why NTSC is tricky to digitize
The standard for broadcasting TV signals in the United States is called NTSC (National Te
sion Systems Committee). NTSC was first proposed in 1940 and was standardized in 1953
visions sweep an electron beam horizontally across a phosphor coated screen, starting fro
upper left and working downward. The phosphors emit light when struck by the electrons, an
changing the strength of the electron beam, the phosphors that are excited change and cre
moving image.

There are 525 horizontal scan lines in each NTSC frame (a frame is one complete screen)
NTSC frame is divided into 2 fields of 262.5 horizontal lines each. The first field contains the e
horizontal lines, and the next field contains the odd lines. Even and odd fields are interlace
between each other. Figure 5 shows the relationship between the even and odd horizontal l
each field, and the format of the digitizer’s output. 30 frames (or 60 fields) are sent each se
and the first 22 horizontal lines in each frame are blank (called vertical blanking) to allow time
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the electron beam to return to the upper left corner of the screen. The useful part of NTSC 
active video information) is 480 horizontal lines (240 per frame) of continuos voltage levels

Using only a single wire and 6 MHz of bandwidth, all of the information for both colors and e
tron bean movement are somehow transmitted in an NTSC signal. The end of each horizont
is marked by a horizontal sync pulse of -1 Volt. The end of a frame is marked by another, lo

pulse of -1 Volt called the vertical sync.1

Figure: 5: NTSC conversion

The digitizer converts the NTSC signal into a 64x64 grid of black and white pixels. The timing
the NTSC signal is crucial for the digitizer to work correctly, so NTSC timing is described in g
detail below.

A schematic view of the NTSC signal is shown in Figure 6. After the end of a horizontal syn
there is 7 uS “back porch” before active video data is available. In the 1957 revision of NTS
support color, the “back porch” contains a “color burst” (see Figure 9 for an oscilloscope trac
an actual color burst) that sets the palette of colors that will be used for the upcoming data
“color burst” is used to synchronize a phase locked loop, whose output is used to separate
chrominance and luminance information from the active video by some magical process. Co
way beyond the scope of the VTTS, and therefore the digitizer is interested only in the intens
the signal so all color information is discarded. To avoid digitizing the back porch and colorb
the first 7 uS of each horizontal scan line are ignored. After the first 7 uS there is active vid
51.8 uS in the form of a continuos voltage level.

1. http://library.cs.tuiasi.ro/dictionary/sml-computer-dictionary/ch15/442-443.html
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525 lines per frame total
(480 lines with active video)
240 lines per field

(...)
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"odd"  frame scan line

NTSC
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Each field has half 
 of the horizontal 
 lines in each frame.

Fields are interlaced.

Digitizer

Monitor

(...)
64 Pixels

64 Pixels
(Although the digitizer can provide 128)
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Figure: 6: Schematic of NTSC format

Sync recovery
NTSC is a very analog format, and the VTTS dreams in digital. The digitizer must therefore
vert all of the NTSC analog tom-foolery into clean digital signals. A GS4981 sync recovery 
was used to detect the horizontal and vertical sync pulses, and an LM311 was used as a c
tor to compare the NTSC data voltage to a predetermined threshold.

Video Signal

1 horizontal scan line
take 192 samples

(...)

1 horizontal scan line
ignore

HSYNC

63.6 uS

active video
52.9 uS

horizontal scan line

Horizontal
Scan Lines

Vertical
Frames

1 vertical frame
contains 240 scan lines

HSYNC
pulses

(1/60) second

color burst 
6.4 uS 

 blanking(?)
 1.5 uS

 blanking(?)
 1.5 uS

HSYNC

VSYNC

(...)

22 blank lines
("Vertical Blanking")
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Figure: 7: Sync recovery and A2D wiring diagram

The GS4981, while obsolete, works well when it is configured properly. Unfortunately, the a
cation notes presented in the GS4981 spec sheet were hard to understand. There were abo
circuits which did not work. By trial, error and some luck, the circuit in Figure 7 was arrived
This circuit gives a negative true HSYNC signal that is low during a horizontal sync and high
erwise. The circuit also gives a negative true VSYNC which is low during a vertical sync and
otherwise. Another useful signal derived from the VSYNC signal is the EVEN signal that is
for alternate frames, and provides a measure of relative location within a frame. The EVEN s
can be used to detect the start of individual frames.

Discriminator
The digitizer converts the continuous analog voltage level of the NTSC signal into a logical on
a zero. To perform the conversion, an analog comparator with a variable reference voltage

used1. Figure 8 shows a schematic for the discriminator circuit that was constructed. The re

1. A comparator is a operational amplifier configured in a feed back loop such that if the
input voltage is above the threshold voltage, a logical one appears at the output, and
the input voltage is below the threshold voltage, a logical zero appears at the output.
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ence voltage is set by placing a potentiometer in a voltage divider. By changing the resistan
the potentiometer, the threshold voltage can be either raised or lowered. The potentiometer
ingly called the discriminator, and it functions like the contrast dial on a television set, allow
the VTTS to discriminate objects from the background.

Figure: 8: Schematic of an analog comparator with variable threshold

Implementation
The wiring of both the sync recovery circuitry and the discriminator is shown in Figure 7.
Although schematics of the NTSC signal were provided during the design phase, many sub
such as the vertical blanking, back porch and color burst were only apparent after the initia
implementation. Therefore, included for the reader are actual oscilloscope traces of an NTS
nal and the corresponding output from the sync recovery circuitry and the discriminator in Fig
9, 10, 11 and 12.

Figure: 9: Oscilloscope trace of NTSC signal, HSync, and color burst

Notes:
Use an LM311 for the op amp.

-
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Figure: 10: Oscilloscope trace of NTSC signal and Even

Figure: 11: Oscilloscope trace of NTSC signal and discriminator output

Figure: 12: Oscilloscope trace of NTSC signal and vertical blanking
VTTS 10
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Digitizer-Digital (Andrew Lamb)

Overview
Figure: 13: Digitizer block diagram

While the analog parts of the digitizer are interesting, the major functionality (and therefore
plexity) is in the address and buffer unit. Originally, the digitizer was conceived of as some 
binational logic with some counters that generated addresses with the hsync and vsync dig
signals. Unfortunately, the original system design also called for 192 samples per horizonta
To achieve a sample rate of 192 samples per line, an MCU buffering scheme was designed
Squeezing 192 samples per horizontal line determined much of the design for the digitizer, a
the time that the resolution was dropped to 64 samples per line, the digitizer design was al
finalized and partially implemented.

Since 192 samples were to be taken over a period of about 50 uS, a minimum clock rate of 4
would have been necessary. The 4 MHz number assumes a single sample can be process
MCU cycle during a horizontal scan line, so 8MHz seemed a more reasonable estimate of th
uisite clock speed. However, since the 6.111 “nerd kit” has a top safe speed of around 10M
8MHz seemed too close to pushing the limit. Somehow the other kits would have had to pr
data at least this fast, and quickly it became apparent that an alternate approach was nece

Since only 64 of 262.5 possible horizontal lines are digitized, much of the NTSC data is ign
and the digitizer spends a lot of time waiting for new data to sample. By buffering data into 
RAM during one frame, and then playing it back out slowly and evenly during the next frame
other kits have the necessary time to process the incoming data.

A buffering unit was implemented that is capable of storing a screen’s worth of data and the
slowly playing the buffered data back out to the other units. Figure 13 shows a block diagra
the entire digitizer module.
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Figure: 14: Address and buffer unit block diagram

The address and buffer unit does nothing more than buffer a screen’s worth of data and the
it back slowly. Unfortunately, it requires a RAM, an MCU, various counters to address the R
and clock trickery to sample data quickly. Figure 14 shows a block diagram of the address 
buffer unit.

The address and buffer unit actually takes 128 samples per line, even though the resolutio
by the other kits is 64 horizontal samples. By the time that it was decided to drop to 64 pixels
address and buffer unit had already largely been constructed, and it was easier to ignore the
X address bit than to redesign the digitizer.

Sampling strategy
To take 128 evenly spaced samples over 50 uS of active data with a 1.75 MHz system cloc
least 2 samples per MCU cycle must be taken. The overhead of driving a bus, incrementin
counters, writing to the RAM, and looping dictates 3 MCU instructions. The addressing and
age unit must therefore be able to capture 8 bits of data in 4 MCU instructions. By using a 
shift buffer, the 8 previous bits of data are latched at once from the fast shift buffer, and writte
a single location in RAM while the next 8 data bits are being stored in the fast shift buffer. T
the next 8 bits are latched, and the process repeats until the end of the horizontal line.

The fast shift register in the address and buffer unit is called the fast sample unit. The fast sa
unit is the only module in the address and buffer unit that is clocked with the 3.5 MHZ clock.
6264 RAM used in lab 3 has 8 data bits per address location, so all 8 samples can be stored
memory location. The upper 6 bits of the RAM address are the current Y location (current l
The lower 4 bits of the RAM address are the upper 4 bits of the X address. Within each RAM
byte, the most significant bit is the first bit that was sampled. Therefore, the lowest three bi

MCU wait
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 x_count
 x_reset

 y_full

 x_full

 o_full

6264
RAM

A[10:4]
A[3:0]
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the X address are the data bit’s offset within the byte. Figure 15 shows how an pixel addres
relates to its storage location in RAM.

Figure: 15: Pixel addresses

The 4 instruction algorithm to sample a single horizontal line is as follows. (Note: the rising e
of HSync can be used to determine when a particular horizontal scan line starts):

• Latch the current 8 data bits from the fastsamp shift buffer.
• Drive the latched 8 data bits onto the bus and store the value in the 6264 RAM.
• Increment the address (6 bits of Y, 4 bits of X)
• Loop

Figure: 16: Example storage locations

Figure 16 is an example of the fast sampling strategy. The pixels at (64,32) through (71,32
be stored into the same location in RAM. The RAM address is computed by taking the Y add
and concatenating it with the high 4 bits of the X address. The low three bits of the X addres
referred to as the Offset, and they denote at which location in the byte that particular bit of da
stored.

Y Count Offset Count

(13 bits)

Digitizer internal
representation

Target detection and
output interpretation

X Count

X Address Y Address
ignored

RAM location bit offset

Pixel Grid

(...)

(...)
(X,Y) = (64,32) = (1000000, 010000) 
(X,Y) = (65,32) = (1000001, 010000) 

(X,Y) = (71,32) = (100011l, 010000) 

(X,Y) = (66,32) = (1000010, 010000) 
(X,Y) = (67,32) = (1000011, 010000) 
(X,Y) = (68,32) = (1000100, 010000) 
(X,Y) = (69,32) = (1000101, 010000) 
(X,Y) = (70,32) = (1000110, 010000) 

RAM Location: Y[5:0] & X[6:3] =
              010000 & 1000   =
              
RAM Location = 0100001000

Data offsets:
(64,32) is at offset 0
(65,32) is at offset 1
(66,32) is at offset 2
(67,32) is at offset 3
(68,32) is at offset 4
(69,32) is at offset 5
(70,32) is at offset 6
(71,32) is at offset 7

offset

Byte that is written to memory

1 0 111 000
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Playback strategy
To transmit data to the other kits, one bit of data and a 12 bit address are sent, along with t
data_available and wait signals. Since the address and buffer unit stores 8 bits of sampled
the same memory location, the entire 8 bits need to be read out and the appropriate offsets
municated to the other kits. The output unit loads data from a RAM location, and then shifts
the bits one by one to the other kits, incrementing an offset counter each shift.

The algorithm for sending a buffered byte of data:

• Select the top 10 address bits (Y Counter and X Counter).
• Read the data byte stored at that location into the output unit. The output unit will show

data at offset 0 and the Offset Counter will be at 000.
• Set data_available line high for long enough for the other kits to process the current dat
• Increment the Offset counter and shift the output unit to the next bit. The output unit will n

show the data at offset 1 and the Offset Counter will be at 001.
• Repeat for each of the 8 offsets.
• Select the next top 10 address bits, load the next byte, and repeat until the entire buffer

been transmitted.

Figure 17 shows an analyzer trace of the communication lines between kits.
Figure: 17: Oscilloscope trace of inter-kit communication lines

Clock generation
For the address and buffering unit, a fast clock and a slow clock derived from it are necessar
circuit for a 3.5 MHz clock from the video controller handout was used as a starting point fo
clock generation.The sampling clock is a 3.5 MHZ signal with a measured period of 280 nS.
system clock is the sampling clock divided by a factor of two to 1.75 MHZ with a measured
VTTS 14
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period of 560 nS. A circuit diagram for the clock generation is shown in Figure 18, and Figur
contains an oscilloscope trace which illustrates their relationship.

Figure: 18: Clock generation circuit

Figure: 19: Oscilloscope trace showing clk and fastclk

Fast Sampling
Figure: 20: Fast Sample block diagram

The fast sample unit shown in Figure 20 is a shift register that saves the value of the discrimi
output for the last 8 fast clock cycles. Every 4 system clock cycles 8 data points have been s
with the more recent data value being in the least significant bit position. Appendix A contain
VHDL code for the fast sampling unit.

3.579545 MHz
Cyrstal

470 Ohm 470 Ohm

fastclk
(~3.5 MHz)

74LS393

 1(clk_A)

 (clr_A)2

T ~= 280 nS

clk
(~1.75 MHz)

T ~= 560 nS

 (QB_A)3

This circuit creates a 3.5 MHz clock and
a 1.75 MHZ clock. 
(Source: Video Controller Handout)

fast samp

 fastclk data(8)

discriminator
input
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Sample Synchronization
Figure: 21: Synchronizer block diagram

Since the fast sampling unit runs on a different clock than the rest of the system, its output
be treated asynchronously. The digitizer synchronizer is used to latch the current 8 data bits
the fast sampling unit when the dig_load signal is asserted. By latching the 8 bits from the 
sample unit using the synchronizer code in Listing 4, the last 8 data bits can be held stable e
to write to RAM. Since the RAM must also be able to write to the bus, the output from the d
tizer synchronizer is tristated using another PAL as an 8 bit tristate buffer.

The digitizer synchronizer also synchronizes the hsync and even signals from the sync rec
circuitry to the system clock in the same PAL to reduce the number of chips necessary. All o
VHDL code for the synchronizer and the tristate buffers can be found in Appendix A.

HSkip
Figure: 22: Block diagram of the hskip module

Figure 22 shows a block diagram of the HSkip module. The HSkip module is a resettable co
that counts hsync pulses and asserts the done signal when 16 horizontal sync pulses have
The HSkip module is reset at the beginning of each field, and by counting 16 horizontal lines
vertical blanking period is skipped digitized. The initial version of the digitizer had 16 blank lin
at the top of the screen because it was sampling during the vertical blanking period. The co
the HSkip module can be found in Appendix A.

Counters
Figure: 23: Address and buffer unit counters
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Figure 23 shows the three counters that the address and buffer unit uses. The O Counter i
bit counter used to select the data offset within a byte, the X Counter is the top 4 bits of the
address, and the Y Counter is the entire Y address. All of the counters are resettable and o
count on clock cycles that their count signals are enabled. When the counters have reache

maximum counts (23 for O Count, 24 for X Count, and 26 for Y Count) they assert a full signal
which is available to the MCU. The X counter is wired to the low four bits of the RAM addre
and the Y counter is wired to the next six bits of the RAM address. The VHDL code to implem
the three counters is in Appendix A.

Output unit
Figure: 24: Output unit block diagram

The output unit is a loadable shift register. When the out_load signal is asserted, the 8 bit val
the data bus is latched by the output unit, and the highest bit is passed on to data_out. Wh
out_shift signal is asserted, the internal register is shifted to the left by one, so the next highe
is now passed on to data_out. The output unit is used to unpack data bits that were packed
fast capture unit one at a time. The MCU controls playback by loading a byte from RAM into
output unit, and then shifting the data back out one bit at a time. Since the MCU controls p
back, inter-kit communication timing can be changed by updating MCU code. Appendix A sh
the VHDL code for the output unit.

RAM
Figure: 25: Ram Wiring

output unit
 data_out
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A standard 6264 Random Access memory (RAM) was used to buffer each byte of data. Figu
shows the wiring scheme that was used.

MCU
Figure: 26: MCU block diagram

The Microcontroller Unit (MCU) that is used for the address and buffer unit is the same MCU
was used for lab 3. The MCU from lab three has two types of instructions, an ASSERT and
CJMP (Conditional JumP). An ASSERT instruction’s highest bit is a 1 and a conditional jum
highest bit is a 0. Figure 27 shows the MCU instruction format.

Figure: 27: MCU instruction format

PROM1
(high byte)

PROM0
(low byte)

’163 ’163

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0

S

n_xfull
y_full

o_full

enable

3

7
Vcc

 n_load  n_load

4 (high bits) 4 (low bits)

count_out count_out

address address

8

8 8

 countVcc  count rco  rco 

op_code

4 4

data_indata_in1
2
3
4

HSync(sync)
Even(sync)

mcuassert2 mcuassert1

 low
 bits
 (8)

high 
bits 

(8) 

x_count

opcode opcode

x_reset
y_count
y_reset
o_count
o_reset
out_load
out_shift

ram_noe
dig_load

dig_oe
data_av

wait

RamWrite
(Hack)

8

address

ram_nwe

MCU Instruction Format(same as Lab 3)

0Conditional Jump (JMP) condition address

Bit positions 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0Unconditional Jump (JMP) address1 1 1

X X X

1Asserts D7 D6 D5 D4 D3 D2 D1 D0

ASSERT SIGNALS

D0  XCOUNT
D1  XRESET
D2  YCOUNT
D3  YRESET
D4  OFFSET_COUNT
D5  OFFSET_RESET
D6  OUTPUT_LOAD
D7  OUTPUT_SHIFT
D8  HSKIP_RESET
D9  RAM_OE
D10 DIG_LOAD
D11 DIG_OE
D12 DATA_AV
D13 WAIT_SET
D14 WAIT_UNSET

X

X X X X

CONDITIONS

000 n_XFULL
001 YFULL
010 OFFESTFULL
011 HSYNC
100 EVEN
101 PLAYBACK
110 HSKIP_DONE
111 TRUE

D8D9D10D11D12D13D14
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A clever reader will realize that the MCU can not assert a RAM write pulse. Instead of expan
the MCU’s data word (which would have involved adding an additional prom to the MCU) a
“clever” hack was introduced. A PAL is connected to the address lines of the MCU and it as
the negative true write pulse for the RAM whenever a particular instruction was executed. F
28 shows a block diagram of the MCU. Appendix A shows the VHDL code for the RAM wri
hack. Tables 1 and 2 summarize the MCU input and output signals.

Table 1: Digitizer MCU Assertions

Assert Signal Purpose
Bit

Location

XCount Increments the X Counter by 1 0

XReset Resets the X Counter to 0000 1

YCount Increments the Y Counter by 1 2

YReset Resets the Y Counter to 000000 3

OffsetCount Increments the Offset Counter by 1 4

OffsetReset Resets the Offset Counter to 000 5

OutputLoad Causes the Output unit to latch the value on the data bus 6

OutputShift Causes the Output unit to output the next highest bit 7

HSkipReset Resets the HSkip module’s counter. The HSkipFull con-
dition will be true after 16 horizontal sync pulses.

8

Ram_OE Causes the RAM to drive the bus 9

Dig_Load Latches the current 8 bit byte from the fast capture unit
into the synchronizer

10

Dig_OE Causes the data value from the synchronizer to be driven
to the bus

11

Data_AV
(data_available)

Alerts the other kits that there is valid data on the com-
munication lines

12

Wait_Set Sets the wait inter-kit signal high 13

Wait_Unset Sets the wait inter-kit signal low 14
VTTS 19
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Appendix A contains the MCU assertion logic. Somewhat interesting is the fact that the wa
nal is settable/resettable by the MCU. When the MCU asserts a WAIT_SET signal, the wait s
is set to high, and the wait signal remains high until the MCU asserts a WAIT_UNSET sign
which causes the wait signal to go low.

The MCU code presented in Appendix A implements the sampling and playback algorithm
sented in the sampling strategy and playback strategy sections above. The MCU assembler
in Listing 24 is included to show where the RAM write occurs. The ramwrite.vhd code states
when address 1C is being executed the RAM write pulse is asserted low. Since the assertion
latches the PROM values the cycle after the address has been asserted, the write pulse ac
happens the same clock cycle as the assert signals at MCU address 0x1B.

Table 2: Digitizer MCU Conditions

Condition Purpose
Bit

Location

n_XFull High when the X Counter is not 1111, low when the X
Counter is 1111 (XFull is negative true to save an instruc-
tion in the sample loop)

0 (000)

YFull High when the Y Counter is 111111, low when the Y
Counter is not 111111

1 (001)

OffsetFull High when the Offset Counter is 111, low when the Y
Counter is not 111

2 (010)

HSync Synchronizer version of HSync from sync recovery unit.
High when not horizontal sync, low during a horizontal
sync pulse

3 (011)

Even High for one field, low for the next 4 (100)

PlayBack User input switch to allow continuous playback of the
same screen from memory. Used for debugging purposes

5 (101)

HSkipDone High after 16 hsync pulses have passed since the last
HSkip reset occurred

6 (110)

True Always true to allow for unconditional jumps. 7 (111)
VTTS 20
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Target Detection (Nathan Fitzgerald)

Figure: 28: Detector block diagram

The goal of the target detector system is to determine the location of the target from the video
given by the digitizer. It then outputs the x-y coordinates of the target to the video output un
crosshair overlay and outputs a directional signal (up, down, left or right) to the camera con
unit. A high level block diagram of the detector appears in Figure 28. The design fits almos
entirely on three Cypress 374I CPLDs (Complex Programmable Logic Device). Only 3 exte
PALs (Programmable Array Logic) are required. This means that the design could be trans
between 6.111 kits with relative ease, limiting the number of inter-kit transmission lines.

The detector works by finding the “center of mass” of all white pixels on the screen, and assu
that the center of mass is the center of the target. The unit operates in two modes. In the fi
mode, the x and y addresses of all white pixels are summed separately and the total numb
white pixels on the screen are counted. No memory is required for this function; the data is
summed sequentially as it is received from the digitizer. In the second mode, the x and y a
sums are divided by the total number of pixels to determine the average address.

The division step required the most engineering of all the parts that make up the detector. Th
iting factor is the size of the x and y address sums and the white pixel counter. If the target
pies the entirety of the screen, all the pixels will be white. On a 64 x 64 screen, that means th
white pixel counter has to be able to reach a value of 4096, which is a 12 bit number. The x a
address sums must be able to reach a value of 258,048, an 18 bit number. The number of flip
required to implement the counters and shift registers necessary to do the calculation is quite
and is difficult to fit on a single Cypress 374I CPLD. The solution to this issue is to break th
culation between multiple CPLDs, however the number of pins on the CPLD board then bec
the limiting factor. Sending 19-bit buses between CPLDs quickly uses up the limited numbe
output pins on the CPLD board. The detector design is elegant because it makes use of m
CPLDs on the CPLD board and limits the number of output pins and inter-CPLD connectio
required.
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x
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y
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Figure: 29: Detector refined block diagram

A refined block diagram of the design appears in Figure 29. Two CPLDs are dedicated to the
aging calculations of the x and y addresses. They input the address given by the digitizer a
as control signals from a finite state machine (FSM) that controls what address is assumed t
a valid white pixel and also control the mode of calculation (summing vs. division). During t
division mode, these units serially output the average address to two 22V10 PALs, which a
shift registers that deserialize the target address. The FSM controls when the PALs stop shif
serialized data. A motor control PAL (a 20V8) compares the x and y target addresses to the
address of the center of the screen to determine the direction that the camera must pivot in o
move the target to the center of the screen. The source code for the CPLDs appears in Ap
B.

Figure: 30: Detector FSM

374I CPLD x
address

y
address

data
data_available
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The states of the FSM appear in Figure 30. Only three states are required to control the de
In the reset state, a restart signal is asserted that clears the counters in the x and y detecto
mode of the detectors is set to 0 (adding mode) and the system stays in that state until the
end-of-frame signals go low and the detector begins giving valid data. Then the FSM move
load state where it screens the data signal from the detectors for valid data, i.e. data that is
while data_available is high, and passes valid signals on to the detectors. The FSM remains
state until the end of the frame. Then the FSM transitions to an averaging state, and the mo
put changes to 1 (divide mode). A counter internal to the FSM begins counting the number
clock cycles that the FSM has been in the Average mode. During this time, the detectors a
ally transmitting data to the deserializers. After 7 clock cycles, the FSM signals the deseria
to stop collecting data and output the target addresses. The FSM then resets itself and begin
ing for new data.

Figure: 31: Detector Divider

The division works by implementing an algorithm similar to the one taught to elementary sc
students by using a shift register, comparator, and subtractor. A diagram of this unit appea
Figure 31. The algorithm differs from the one taught to elementary school children in that it
makes use of the fact that it being used to find an average. It is known that the quotient will b
bit number. It can therefore be assumed that the denominator is greater than the first 12 bi
so the standard division algorithm can begin at the 13th bit. This cuts down the size of the 
register needed to do the division, making it easier to fit on the CPLD.

The deserializers are essentially shift registers that are enabled by a signal from the FSM. 
do, however, have one additional feature. It is known that the quotient is a 6 bit number, bu
system is designed to handle 7 bit division. In the event of a blank screen, a divide-by-zero
occur, and the detectors will output a stream of ones to the deserializers. Having the extra 
allows the deserializer to distinguish between a blank screen and a target located at x = 31 a
31. In the event of a blank screen, the deserializers output the address of the middle of the s

Comparator

num > den ?

Shift Register
(numerator)

19 bits

Subtractor

num(high 13 bits)-den

Counter
(denominator)

13 bits

LD

12 bits(MSB)

D (MSB)’s

From Left +5

serial out

Mode
(From FSM)

EN
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The deserializers were implemented in VHDL using 22v10 PALs. The source code appears
Appendix B.

The final part of the detector unit is the camera control unit. It basically compares the x and
get coordinates to the coordinate at the center of the screen. If the target is more than a few
away from the center, the appropriate up, down, left or right signal will be asserted to move
target to the center of the screen. The deserializers were implemented in VHDL using 20V
PALs. The source code appears in Appendix B.

Camera Control

Overview
Figure: 32: Stepper motor system diagram

After the target detection module determines the center of the screen from the digitized cam
signal, the signals up, down, left and right are generated. These signals are used by the st
motor electronics which control the actual motors which move the camera mount.

Electronics (Andrew Lamb)
A stepper motor is like a normal DC motor, except each of a stepper motor’s coils can be c
trolled individually. Electric motors move because of magnetic repulsion between a perman
magnet and an electromagnet made by running current through one of the motor’s coils. Th
motor rotates when the coils that current flows through are cycled through in a particular ord
a normal DC motor, mechanical motor brushes cause the correct coil activation sequence. I
per motors, since each coil can be activated individually, the motor rotates a specific amou
each step. The stepper motors were configured as suggested by the 6.111 handout. Figure
shows a schematic diagram of the bifiliar configuration that was used. The motor coils are
attached to the control lines IA+, IA-, IB+ and IB- to allow low current digital logic signals fro
PALs to control the high current stepper motors.

camera
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(X)

stepper
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(Y)

motor control
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IA+,IA-
IB+,IB-

up
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rightclk
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Figure: 33: Stepper motor coil configuration

The stepper motors should not be powered from the 6.111 kit. The 6.111 kit, while having a
Amp power supply, is not set up to handle the surges that a stepper motor can generate, s
external power supply is used. The external power supply is controlled by the IA+, IA-, IB+ 
IB- signals. When one of the IA+, IA-, IB+ or IB- signals is a logical high, a path is created fr
the external power supply to ground through the appropriate coil causing the stepper moto
advance to the next position.

To activate the coils in the correct sequence, an FSM is used to generate IA+, IA-, IB+ and
signals based on forward and reverse input signals. Originally, a four full-step sequence wa
implemented, but each step was too large when the mount was build. To decrease the step s
8 half-step sequence was implemented. Figure 34 shows the block diagram for the motor c
circuitry, Table 3 shows the FSM states, and Listing 1 shows the VHDL code to implement 
FSM.

Figure: 34: Stepper motor FSM block diagram
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reset
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clk
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To actually implement the control as specified above, the TPIC 2404 was used as suggested
stepper motor handout, and the circuit in Figure 35 was constructed.

Figure: 35: Stepper motor wiring diagram

Table 3: FSM states

State IA+ IA- IB+ IB-

s1 On Off On Off

s2 On Off Off Off

s3 On Off Off On

s4 Off Off Off On

s5 Off On Off On

s6 Off On Off Off

s7 Off On On Off

s8 Off Off On Off

s1 On Off On Off
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Figure: 36: Physical motor mount

The camera stage is a two-axis rotational stage made out of 6061 aluminum alloy. Stepper m
are attached to the device via set screws. The camera is attached by a screw to the y-axis 

Video Output Unit (Chris Lyon)

Overview
Once the video input signal from the camera has been captured, it is desired to overlay ima
a square and a crosshair over it before outputting it to the TV Monitor.

Figure: 37:  Video Output Unit Block Diagram

The overall system design is built around an MCU. A comprehensive block diagram can be
in Figure 37. The Storage block is responsible for taking the signal from the digitizer, conve
it to the appropriate format, and storing it in the SRAM buffer. The Modify block takes the o
nal image, and overlays the images of the box and crosshair over it. Once the frame has bee
processed, it is passed to the Video Output block for display on a TV monitor.

MCU

Storage

SRAM Buffer

Video Output

Modify
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Storage
In the graphics display mode used, each pixel can be displayed in one of four colors, at a r
tion of 64 x 64 pixels. To allow for the color depth, each pixel must be represented by two b
memory. Because of this fact, a single byte contains the color information for four pixels on
screen. To ensure that the digitized image is properly displayed in the end, this bit-packing
scheme must be strictly adhered to. Unfortunately, doing so leads to a more complex data s
and modification scheme.

The digitized video signal is received from the Digitizer Unit one pixel at a time. Since four pix
must be stored in each byte, a PAL is used to build each byte. Once a byte has been comp
assembled, it is written to the current location in memory. A circuit diagram for the Storage
is shown in Figure 38. The VHDL code for the Storage PAL is in Appendix C.

Figure: 38: Storage Unit Circuit Diagram

A main counter programmed into a CPLD is used to increment the address lines to the SR
When the Digitizer is ready to send data, its WAIT status signal goes low. CLEARCOUNT i
asserted to reset the address lines to the SRAM. Immediately following that, DATAAVAIL will
high, signifying that the first pixel’s value is stable on the DATA line. The low two x address
from the Digitizer are used to index the current pixel storage location within the byte being stor
As each pixel becomes available, SLOAD is asserted to read the current DATA value into th
Storage PAL in the proper location. Once four pixels have been stored, the output of the St
PAL is enabled, driving the new byte to the data bus. The memory write-pulse is then assert
write the byte to the correct location in memory. The main address counter is now increme
and this process continues until the main counter sets the MCU status signal COUNTFULL
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timing diagram for the storage process is shown in Figure 39. The VHDL code for the Main
CPLD is in Appendix C.

Figure: 39: Memory Storage Timing Diagram

It is important to note that a slight modification has been made to the standard bit-packing co
tion for the video signal. The order of each byte has been reversed in memory, to simplify t
pixel storage process pertaining to the two address lines. This modification is compensated
swapping the order of the data lines at a later time when the contents of the SRAM is actually
ied into the VRAM.

Modification
Figure: 40: Modification Algorithm

Unfortunately, gaining the ability to perform a fully transparent overlay over the stored video
image proved to be a fairly daunting task. To accomplish the overlay, it was necessary to ha
capability of changing the color of one pixel at a time. Since four pixels are stored in each b
the target byte must be read out, modified, and written back into the same location in memo
the lowest level, this procedure is accomplished by performing an ‘AND’ operation between
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original byte and a masking field, after which the result is ‘OR’d with the new pixel’s color va
in the desired location. The overall modification algorithm is detailed in Figure 40.

Figure: 41: Overlay Image Pixel Maps

Once the single-pixel-replacement strategy is possible, entire images can be copied over th
tured video sequence one pixel at a time. The box and crosshair images are both stored in
PROM chip. The actual pixel maps for both images are shown in Figure 41, and the data fi
the PROM contents can be found in Appendix C.

The images are actually stored as a sequence of x and y values for each pixel whose color i
changed. Since both images are less than 16 pixels square, both the X and Y values can be
in a single byte, with four bits allotted for each dimension.

As the images are stored, they are located in the upper left corner of the screen. During the
cess of copying them into main memory, offset values are computed and then added to the
locations being read out to locate the images at the desired screen locations.

Since the box is always located at the center of the screen, the location of each pixel being
out of the PROM just needs to have a constant value added to both dimensions. Once this v
computed, the result is directly outputted to the memory address and pixel select lines.

Performing the crosshair overlay is slightly more complicated. In this case, the screen offse
the image is received from the Detector. The data from the Detector must be latched to ensu
it remains constant throughout the entire operation. This latching is accomplished using tw
PALs. The VHDL code for these PALs is located in Appendix C.

Since the crosshair should always be completely on the screen, the offset value is overridd
is too close to any of the edges. If the detected image lies near an edge, the crosshair will 
appear at that edge. This manual offset override is handled by the CPLD. As before, the com
location for each pixel is output to the address and pixel offset lines.

A circuit diagram for the modification logic is shown in Figure 42. As the main counter incre
ments the address lines to the PROM, the resulting pixel locations are returned and the off
computed. The pixel locations are computed as 12 bit numbers, with the first six bits corres
ing to the Y-location on the screen, and the last six bits corresponding to the X-location. Th
est two bits of the X-location are used as the pixel index within a byte, while the remaining 
ten bits of the entire address are used to index the desired byte in memory. It should be note
the SYMBOL assertion signal is used as the ninth address bit to the PROM, and determines
image is actually being read out by the 8-bit counter.
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Figure: 42: Modification Unit Circuit Diagram

To perform the actual memory modification, CLEARCOUNT is first asserted to reset the m
counter. With the appropriate symbol selected by the MCU, the location of the first pixel is r
out of the PROM and the offset is computed. Once the output address lines are stable, the
byte is read out by asserting RAMOE. That byte is then latched into the Modify PAL by asse
the MODLOAD signal. Once the pixel replacement algorithm is performed, the PAL drives t
newly modified byte back onto the databus upon assertion of MODENABLE. Once the new
is stable, a memory write pulse is asserted to store the new byte in its previous location in 
SRAM. The main counter is now incremented to handle the next pixel being replaced. This
cess continues until the SYMBOLDONE status signal is asserted by the CPLD. Since each
two overlay images has a different number of pixels, the maximum value of the counter is d
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dent on which symbol is being read. A timing diagram of the modification process can be fou
Figure 43. The VHDL code for the Modify PAL is in Appendix C.

Figure: 43: Memory Modification Timing Diagram

Memory Copy
Figure: 44: Memory Copy Circuit Diagram
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Once both images have been overlaid on the digitized video signal, the completed frame is
to be output to the TV. Since the Video Output Unit is reading the screen data out of its own
VRAM chip, the entire contents of the SRAM must be copied into the VRAM in order to be 
played. This process is complicated by the fact that the actual Video Controller must have u
stricted read access to the VRAM for almost the entire frame period.

During the vertical blanking period, the Video Controller relinquishes its access to the VRA
and the contents can be rewritten. Since the blanking period only lasts for 2 ms, this opera
must be accomplished quickly. Essentially, the address and data lines for both RAM chips ar
together. Upon inspection of the circuit diagram in Figure 44, the reader will notice that two P
actually handle tristate buffering of the data, address, and control signals to the VRAM. This
tional logic is necessary to prevent tristate bus contention, which could permanently damag
parts and cause erratic behavior. The VHDL code for the VRAM Tristate PALs is in Appendix

To begin the copy process, the address counter is reset to zero by asserting CLEARCOUNT.
timing is of the essence due to the vertical blanking constraint, RAMOE will be held low for
entire copy process. With the main counter now addressing both RAM chips, and the data 
of both chips connected, the VRAM is seeing the data at the current location in the SRAM.
write pulse is asserted via the VWRITE signal to store the current byte in the VRAM. INCR
MENT is now asserted to increment the main counter to address the next byte in both RAM c
The VWRITE signal is again asserted to store the byte. This process is repeated until COU
FULL goes high, signifying that the end of the used memory has been reached. Once every b
copied and the vertical blanking period ends, control of the VRAM is returned to the Video 
troller. A timing diagram of this process is shown in Figure 45.

Figure: 45: Memory Copy Timing Diagram

Video Controller
The Video Controller is responsible for converting the digital composite video signal into the
log signals necessary to drive a TV Monitor. An MC6847 Video Controller chip is used to g
ate the synchronization, chroma, and luminance signals for the output. The MC6847 opera

Clearcount

/FS

RAMOE

V-WRITE

Increment
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mode CG1, providing for a resolution of 64 by 64 pixels with four possible colors per pixel. T
operational mode is set by selecting the appropriate values for the 8 mode-select inputs to
chip. The output signals from the MC6847 are converted to RGB signals by combinational 
programmed into a PAL. The monitor receives the R, G, and B data lines, as well as the HS
and VSYNC signals. A full circuit diagram for the Video Controller Unit is shown in Figure 4

Figure: 46: Video Controller Unit Circuit Diagram

The MC6847 has unrestricted access to the VRAM chip, with its address and data lines dir
connected. The HSYNC signal to the monitor is pulled directly from the chip with no modifi
tions. The /FS signal from the chip however, must be passed through a one-shot timer to cre
necessary delayed vertical synchronization pulse that is connected to the VSYNC input on th
/FS is also tied directly to the /MS input on the MC6847. This connection forces the MC684
relinquish control of its data and address lines during the vertical blanking period.
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To create a color display, the Y, phiA, and phiB outputs of the MC6847 must be converted to
Green, and Blue values for the actual TV to display. These outputs must first be compared
determined voltages via AM26LS32 comparators to create a series of digital outputs. Thes
tal outputs must then be passed through combinational logic to convert them to R, G and B v
The logic for this operation is programmed into a PAL. The VHDL code for the Video PAL is
Appendix C.

The final stage of combinational logic is implemented with S38 NAND gates. Since these g
are open-collector, they must be tied high with the specified resistor values. Using the S38 g
what enables the Video Controller to produce the color Orange. Although Orange is not us
this specific project, it was desired to retain the ability to do so should the need arise. The R
Green, and Blue outputs from the combinational logic are directly connected to the TV mon

MCU
The MCU used to drive the control signals for the entire Video Output Unit is identical in str
ture and function to that used in the Digitizer. The only difference lies in the assertion and c
tion signals. Table 4 details the purpose of the assertion signals used by the MCU. Table 5
explains the uses of the condition signals that govern conditional jump instructions in the m
program. The MCU assembly and specification files, as well as the VHDL for the PALs hand
the assertion logic are in Appendix C.

Table 4: Video Output MCU Assertions

Assert Signal Purpose
Bit

Location

VWRITE Sends a write pulse to the VRAM chip. 0

RAMOE Output Enable control signal for the SRAM. 1

RAMWE Write Enable control signal for the SRAM. 2

CLEARCOUNT Resets the main 10-bit counter and clears all of the “full”
signals.

3

INCREMENT Increments the main counter. 4

COPY
Selects between Symbol Mode(0), and Copy Mode(1).
The selected mode determines which “full” signal will be
asserted.

5

MENABLE Enables the address output of the main CPLD unit. 6

SENABLE Enables the output data from the Storage PAL. 7

MODENABLE Enables the output data from the Modify PAL. 8

MODLOAD Loads and modifies the current input byte to the Modify
PAL.

9
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Clock Distribution
It is also important to note that a successful clock distribution scheme is essential to the pr
functionality of the Video Output Unit. With many gates requiring clock signals, fan-out rule
must be strictly obeyed. The entire unit is driven off of the 3.579545 MHz crystal oscillator
required by the Video Controller. The circuit used for clock distribution is shown in Figure 47.
more than three clock signals should be connected to any of the three Inverter outputs.

SYMBOL Selects which symbol, (the box or crosshair) is being read
out of the PROM and also chooses which color it is being
displayed in.

10

DETLOAD Latches the 12-bit data lines from the Detector Unit. 11

SLOAD Grabs the current value from the DATA line and inserts it
into the byte being built in the Storage PAL.

12

Table 5: Video Output MCU Conditions

Condition Purpose
Bit

Location

FS Low when the vertical blanking period for the Video
Controller is occurring.

0 (000)

COUNTFULL High when the main counter has reached its maximum
value.

1 (001)

SYMBOLDONE High when the selected symbol has been fully read. 2 (010)

WAIT Low when the Digitizer is sending data. 3 (011)

DATAAVAIL High when the value on the DATA line is stable and
ready.

4 (100)

True Always true to allow for unconditional jumps. 7 (111)

Table 4: Video Output MCU Assertions

Assert Signal Purpose
Bit

Location
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Figure: 47: Clock Distribution

Conclusion

We had “fun” and learned a lot. Now we are going to sleep.

Appendix A: Digitizer VHDL and MCU code

Listing 1: Stepper motor FSM (stepperhalf.fsm)
-- Stepper motor FSM for target tracking system
-- using half steps
library ieee;
use ieee.std_logic_1164.all;

entity stepperhalffsm is
  port (
    clk           : in  std_logic;
    reset         : in  std_logic;
    fwd           : in  std_logic;
    rev           : in  std_logic;
    aplus, aminus : out std_logic;
    bplus, bminus : out std_logic);

  attribute pin_numbers of stepperhalffsm:entity is
    “clk:1 fwd:2 rev:3 “ &
    “reset:4 “ &
    “aplus:22 aminus:21 “ &
    “bplus:20 bminus:19”;
end stepperhalffsm;

architecture state_machine of stepperhalffsm is
  type StateType is (s1, s2, s3, s4, s5, s6, s7, s8);
  -- exact state encodings
  attribute enum_encoding of StateType:
    type is “000 001 010 011 100 101 110 111”;

  -- p_s = present state
  -- n_s = next state
  signal p_s, n_s : StateType;
begin
  -- state transition process
  -- the four states form a loop. Fwd asserted makes them
  -- go in one direction, and rev makes them go in another
  state_transition:process(clk,fwd,rev,reset,p_s)
    begin
      if (reset = ‘1’)  then
        n_s <= s1;
      else

470 470

3.579545 MHz
Crystal Oscillator

CLK

CLK

CLK
VTTS 37



        case p_s is
          when s1 =>
            if (fwd = ‘1’) then
              n_s <= s2;
            elsif (rev = ‘1’) then
              n_s <= s8;
            else
              n_s <= p_s;
            end if;
          when s2 =>
            if (fwd = ‘1’) then
              n_s <= s3;
            elsif (rev = ‘1’) then
              n_s <= s1;
            else
              n_s <= p_s;
            end if;
          when s3 =>
            if (fwd = ‘1’) then
              n_s <= s4;
            elsif (rev = ‘1’) then
              n_s <= s2;
            else
              n_s <= p_s;
            end if;
          when s4 =>
            if (fwd = ‘1’) then
              n_s <= s5;
            elsif (rev = ‘1’) then
              n_s <= s3;
            else
              n_s <= p_s;
            end if;
          when s5 =>
            if (fwd = ‘1’) then
              n_s <= s6;
            elsif (rev = ‘1’) then
              n_s <= s4;
            else
              n_s <= p_s;
            end if;
          when s6 =>
            if (fwd = ‘1’) then
              n_s <= s7;
            elsif (rev = ‘1’) then
              n_s <= s5;
            else
              n_s <= p_s;
            end if;
          when s7 =>
            if (fwd = ‘1’) then
              n_s <= s8;
            elsif (rev = ‘1’) then
              n_s <= s6;
            else
              n_s <= p_s;
            end if;
          when s8 =>
            if (fwd = ‘1’) then
              n_s <= s1;
            elsif (rev = ‘1’) then
              n_s <= s7;
            else
              n_s <= p_s;
            end if;
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        end case;
      end if;
    end process;

  clk_proc : process (clk)
  begin  -- change to the next state
      if rising_edge(clk) then
  p_s <= n_s;
      end if;
  end process clk_proc;

  -- outputs are only combinational
  aplus  <= ‘1’ when ((p_s = s1) or
                      (p_s = s2) or
                      (p_s = s3)) else ‘0’;
  aminus <= ‘1’ when ((p_s = s5) or
                      (p_s = s6) or
                      (p_s = s7)) else ‘0’;
  bplus  <= ‘1’ when ((p_s = s7) or
                      (p_s = s8) or
                      (p_s = s1)) else ‘0’;
  bminus <= ‘1’ when ((p_s = s3) or
                      (p_s = s4) or
                      (p_s = s5) ) else ‘0’;

end architecture state_machine; --”architecture” is optional; for clarity

Listing 2: Vertical blanking skipping VHDL for HSkip (hskip.vhd)
-- resetable timer that counts 16  hsync
-- pulses and then asserts a blank_done signal
-- this is necessary becuase there are blank lines at the top
-- of a NTSC signal (about 16 of them in fact)
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity hskip is
  port (
    clk        : in  std_logic;
    hsync      : in  std_logic;
    reset      : in  std_logic;
    blank_done : out std_logic);

  attribute pin_numbers of hskip:entity is
    “clk:1 “ &
    “reset:2 “ &
    “hsync:3 “ &
    “blank_done:22”;
end hskip;

architecture state_machine of hskip is
  signal int_count : std_logic_vector(3 downto 0);  -- only to 16
  signal delay_hsync : std_logic;
begin

  process(clk)
    begin
      if rising_edge(clk) then
        -- if reset is asserted, reset the internal counter
        if (reset = ‘1’) then
          int_count <= (others => ‘0’);
        -- if rising edge of hsync
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        elsif (delay_hsync = ‘0’ and hsync = ‘1’ and (not (int_count = “1111”))) then
          -- increment the internal counter
          int_count <= int_count + 1;
        else
          int_count <= int_count;
        end if;

        -- save the current value of hsync
        delay_hsync <= hsync;
      end if;
    end process;

    blank_done <= ‘1’ when (int_count = “1111”) else ‘0’;

  end architecture state_machine; --”architecture” is optional; for clarity

Listing 3: Fast sampling VHDL (fastcapture.vhd)
-- fast capture unit for digitizer
-- the data is captured using a shift register that is
-- running at 4 times the system clock, hence we can
-- store 8 samples every 2 clock cycles.
--
-- if you think about it, the oldest data sample should be
-- the rightmost databit (since that will correspond to
-- an address with last three bits 000.
--
-- therefore, the data capture unit shifts in from the left
library ieee;
use ieee.std_logic_1164.all;

entity fastcapture is
  port (
    clk      : in  std_logic;           -- 3.5 MHz clock
    data_in  : in  std_logic;
    data_out : out std_logic_vector(7 downto 0));

  attribute pin_numbers of fastcapture:entity is
    “clk:1 “ &
    “data_in:2 “ &
    “data_out(0):22 data_out(1):21 data_out(2):20 data_out(3):19 “ &
    “data_out(4):18 data_out(5):17 data_out(6):16 data_out(7):15”;
end fastcapture;

architecture state_machine of fastcapture is
  signal int_data : std_logic_vector(7 downto 0);
begin

  process(clk)
    begin
      if rising_edge(clk) then
        int_data <= data_in & int_data(7 downto 1);
      end if;
    end process;

    -- pass on the combinational output
    data_out <= int_data;
end architecture state_machine; --”architecture” is optional; for clarity

Listing 4: Digitizer synchronization VHDL (synchronizer.vhd)
-- simple, 10 bit
-- d flip flop synchronizer
library ieee;
use ieee.std_logic_1164.all;
VTTS 40



entity synchronizer is
  port (
    clk      : in  std_logic;
    data_in  : in  std_logic_vector(9 downto 0);
    data_out : out std_logic_vector(9 downto 0));

  attribute pin_numbers of synchronizer:entity is
    “clk:1 “ &
    “data_in(0):2 data_in(1):3 data_in(2):4 data_in(3):5 “ &
    “data_in(4):6 data_in(5):7 data_in(6):8 data_in(7):9 “ &
    “data_in(8):10 data_in(9):11 “ &
    “data_out(0):23 data_out(1):22 data_out(2):21 data_out(3):20 “ &
    “data_out(4):19 data_out(5):18 data_out(6):17 data_out(7):16 “ &
    “data_out(8):15 data_out(9):14”;
end synchronizer;

architecture state_machine of synchronizer is

begin
  process(clk)
  begin
    if rising_edge(clk) then
      data_out <= data_in;
    end if;
  end process;

end architecture state_machine; --”architecture” is optional; for clarity

Listing 5: 8 Bit tristate buffer VHDL (tristatebuffer.vhd)
-- 8 bit tristate buffer
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
-- here is the entity
entity tristatebuffer is
  port (
    enable   : in  std_logic;
    data_in  : in  std_logic_vector(7 downto 0);
    data_out : out std_logic_vector(7 downto 0));

  ATTRIBUTE pin_numbers of tristatebuffer :ENTITY is
    “enable:2 “ &
    “data_in(0):3 data_in(1):4 data_in(2):5 data_in(3):6 “ &
    “data_in(4):7 data_in(5):8 data_in(6):9 data_in(7):10 “ &
    “data_out(0):22 data_out(1):21 data_out(2):20 data_out(3):19 “ &
    “data_out(4):18 data_out(5):17 data_out(6):16 data_out(7):15”;

end tristatebuffer;
-- here is the architcture
architecture behavioral of tristatebuffer is
begin
  data_out <= data_in when (enable = ‘1’) else “ZZZZZZZZ”;
end behavioral;

Listing 6: Offset counter VHDL (offsetcounter.vhd)
-- X offset counter
-- counts up to 2^3 (8) and asserts a “full”
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity offsetcounter is
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  port (
    clk      : in  std_logic;
    count    : in  std_logic;
    reset    : in  std_logic;
    full     : out std_logic;
    o_address : out std_logic_vector(2 downto 0));

  attribute pin_numbers of offsetcounter:entity is
    “clk:1 count:2 reset:3 “ &
    “full:21 “ &
    “o_address(2):20 o_address(1):19 o_address(0):18”;

end offsetcounter;

architecture state_machine of offsetcounter is
  signal int_count : std_logic_vector(2 downto 0);
begin

  process(clk)
    begin
      if rising_edge(clk) then
        if (reset = ‘1’) then
          int_count <= (others => ‘0’);  -- reset the count
        elsif ((count = ‘1’) and (not (int_count = “111”))) then
          int_count <= int_count + 1;   -- increment the count if not full
        else
          int_count <= int_count;       -- keep the old value
        end if;
      end if;
    end process;

    -- combinational outputs
    full <= ‘1’ when (int_count = “111”) else ‘0’;
    o_address <= int_count;

end architecture state_machine; --”architecture” is optional; for clarity

Listing 7: X counter VHDL (xcounter.vhd)
-- X address counter
-- counts up to 2^4 (16) and asserts a “full”
-- signal. This is useed for both the Blast FSM and the MCU.
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity xcounter is
  port (
    clk      : in  std_logic;
    count    : in  std_logic;
    reset    : in  std_logic;
    full     : out std_logic;
    n_full   : out std_logic;
    xaddress : out std_logic_vector(3 downto 0));

  attribute pin_numbers of xcounter:entity is
    “clk:1 count:2 reset:3 “ &
    “n_full:22 “ &
    “full:21 “ &
    “xaddress(3):20 xaddress(2):19 xaddress(1):18 xaddress(0):17”;

end xcounter;
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architecture state_machine of xcounter is
  signal int_count : std_logic_vector(3 downto 0);
begin

  process(clk)
    begin
      if rising_edge(clk) then
        if (reset = ‘1’) then
          int_count <= (others => ‘0’);  -- reset the count
        elsif ((count = ‘1’) and (not (int_count = “1111”))) then
          int_count <= int_count + 1;   -- increment the count if not full
        else
          int_count <= int_count;       -- keep the old value
        end if;
      end if;
    end process;

    -- combinational outputs
    full <= ‘1’ when (int_count = “1111”) else ‘0’;
    n_full <= ‘0’ when (int_count = “1111”) else ‘1’;
    xaddress <= int_count;

end architecture state_machine; --”architecture” is optional; for clarity

Listing 8: Y counter (ycounter.vhd)
-- Y address counter
-- counts up to 2^6 (64) and asserts a “full”
-- signal. This is useed for both the Blast FSM and the MCU.
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity ycounter is
  port (
    clk      : in  std_logic;
    count    : in  std_logic;
    reset    : in  std_logic;
    full     : out std_logic;
    yaddress : out std_logic_vector(5 downto 0));

  attribute pin_numbers of ycounter:entity is
    “clk:1 count:2 reset:3 “ &
    “full:21 “ &
    “yaddress(5):20 yaddress(4):19 yaddress(3):18 “ &
    “yaddress(2):17 yaddress(1):16 yaddress(0):15”;

end ycounter;

architecture state_machine of ycounter is
  signal int_count : std_logic_vector(5 downto 0);
begin

  process(clk)
    begin
      if rising_edge(clk) then
        if (reset = ‘1’) then
          int_count <= (others => ‘0’);  -- reset the count
        elsif ((count = ‘1’) and (not (int_count = “111111”))) then
          int_count <= int_count + 1;   -- increment the count if not full
        else
          int_count <= int_count;       -- keep the old value
        end if;
      end if;
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    end process;

    -- combinational outputs
    full <= ‘1’ when (int_count = “111111”) else ‘0’;
    yaddress <= int_count;

end architecture state_machine; --”architecture” is optional; for clarity

Listing 9: Output unit VHDL (outputunit.vhd)
-- the output unit. This unit separates out the packed data that is
-- stored in the RAM (8 data bits per location) and out puts them one at a
-- time, along with their offset into the byte. Hence the output unit is a
-- shift register that also outputs the current bit location.
--
-- the output unit shifts bits out to the right, so the rightmost bit is
-- offset 0, the next bit is offset 1, etc
--
-- Which way things work doesn’t really matter as long as the output unit and
-- the fastcapture units are the same.
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity outputunit is
  port (
    clk          : in  std_logic;
    data_bus     : in  std_logic_vector(7 downto 0);
    load         : in  std_logic;
    shift        : in  std_logic;
    current_data : out std_logic);

  attribute pin_numbers of outputunit:entity is
    “clk:1 load:2 shift:3 “ &
    “current_data:22 “ &
    “data_bus(0):4 data_bus(1):5 data_bus(2):6 data_bus(3):7 “ &
    “data_bus(4):8 data_bus(5):9 data_bus(6):10 data_bus(7):11”;

end outputunit;

architecture state_machine of outputunit is
  signal int_data : std_logic_vector(7 downto 0);
begin

  process(clk)
    begin
      if rising_edge(clk) then
        if (load = ‘1’) then
          int_data <= data_bus;
        elsif (shift = ‘1’) then
          -- shift internal data to the left 1 bit (eg lop off the right bit)
          int_data <= ‘0’ & int_data(7 downto 1);
        else
          -- keep the data the same
          int_data <= int_data;
        end if;
      end if;
    end process;

    -- pass on the combinational output
    current_data <= int_data(0);
end architecture state_machine; --”architecture” is optional; for clarity

Listing 10: Ram write assertion logic--hack (ramwrite.vhd)
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-- pal which asserts a ram nwe pulse
-- on a particular address (ran out of assert sigals)
library ieee;
use ieee.std_logic_1164.all;

entity ramwrite is
  port (
    clk       : in  std_logic;
    addr      : in  std_logic_vector(7 downto 0);
    ram_nwe   : out std_logic);

  attribute pin_numbers of ramwrite:entity is
    “clk:1 “ &
    “addr(0):2 addr(1):3 addr(2):4 addr(3):5 “ &
    “addr(4):6 addr(5):7 addr(6):8 addr(7):9 “ &
    “ram_nwe:23”;

end ramwrite;

architecture state_machine of ramwrite is

begin
  clkproc: process (clk)
  begin
    if rising_edge(clk) then
      if  (addr = “00011100”) then  -- address 1c makes pulse
        ram_nwe <= ‘0’;
      else
        ram_nwe <= ‘1’;
      end if;
    end if;
  end process clkproc;

end architecture state_machine; --”architecture” is optional; for clarity

Listing 11: First half of MCU assertion logic (mcuassert1.vhd)
-- assertion logic for the MCU signals(d0-d7)
-- MCU instruction format
-- d0  = xcount
-- d1  = xreset
-- d2  = ycount
-- d3  = yreset
-- d4  = offset_count
-- d5  = offset_reset
-- d6  = output_load
-- d7  = output_shift
-- d8  = hskip_reset
-- d9  = RAM_oe
-- d10 = dig_load
-- d11 = dig_oe
-- d12 = data_av
-- d13 = wait_set
-- d14 = wait_reset
-- opcode = ‘1’ for asserts

library ieee;
use ieee.std_logic_1164.all;

entity mcuassert1 is
  port (
    clk       : in  std_logic;
    opcode    : in  std_logic;
    mcu_data  : in  std_logic_vector(7 downto 0);
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    xcount    : out std_logic;
    xreset    : out std_logic;
    ycount    : out std_logic;
    yreset    : out std_logic;
    ocount    : out std_logic;
    oreset    : out std_logic;
    out_load  : out std_logic;
    out_shift : out std_logic);

  attribute pin_numbers of mcuassert1:entity is
    “clk:1 opcode:2 “ &
    “mcu_data(0):3 mcu_data(1):4 mcu_data(2):5 mcu_data(3):6 “ &
    “mcu_data(4):7 mcu_data(5):8 mcu_data(6):9 mcu_data(7):10 “ &
    “xcount:22 xreset:21 “ &
    “ycount:20 yreset:19 “ &
    “ocount:18 oreset:17 “ &
    “out_load:16 out_shift:15”;

end mcuassert1;

architecture state_machine of mcuassert1 is

begin

  process(clk)
    begin
      if rising_edge(clk) then
        if (opcode =’1’) then           -- latch all of the inputs to the
                                        -- appropriate outputs
          xcount <= mcu_data(0);
          xreset <= mcu_data(1);
          ycount <= mcu_data(2);
          yreset <= mcu_data(3);
          ocount <= mcu_data(4);
          oreset <= mcu_data(5);
          out_load <= mcu_data(6);
          out_shift <= mcu_data(7);
        else
          xcount <= ‘0’;
          xreset <= ‘0’;
          ycount <= ‘0’;
          yreset <= ‘0’;
          ocount <= ‘0’;
          oreset <= ‘0’;
          out_load <= ‘0’;
          out_shift <= ‘0’;
        end if;
      end if;
    end process;
end architecture state_machine; --”architecture” is optional; for clarity

Listing 12: First half of MCU assertion logic (mcuassert1.vhd)
-- assertion logic for the MCU signals(d8-d12)
-- MCU instruction format
-- d0  = xcount
-- d1  = xreset
-- d2  = ycount
-- d3  = yreset
-- d4  = offset_count
-- d5  = offset_reset
-- d6  = output_load
-- d7  = output_shift
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-- d8  = hskip_reset
-- d9  = RAM_oe
-- d10 = dig_load
-- d11 = dig_oe
-- d12 = data_av
-- d13 = wait_set
-- d14 = wait_reset
-- opcode = ‘1’ for asserts

library ieee;
use ieee.std_logic_1164.all;

entity mcuassert2 is
  port (
    clk        : in  std_logic;
    opcode     : in  std_logic;
    mcu_data   : in  std_logic_vector(14 downto 8);
    hskip_reset: out std_logic;
    ram_noe    : out std_logic;
    dig_load   : out std_logic;
    dig_oe     : out std_logic;
    data_av    : out std_logic;
    data_wait  : out std_logic);

  attribute pin_numbers of mcuassert2:entity is
    “clk:1 opcode:2 “ &
    “mcu_data(8):3 mcu_data(9):4 mcu_data(10):5 mcu_data(11):6 “ &
    “mcu_data(12):7 mcu_data(13):8 mcu_data(14):9 “ &
    “hskip_reset:22 “ &
    “ram_noe:21 “ &
    “dig_load:20 dig_oe:19 “ &
    “data_av:18 data_wait:17”;

end mcuassert2;

architecture state_machine of mcuassert2 is
  signal int_wait : std_logic;
begin
  process(clk)
    begin
      if rising_edge(clk) then
        if (opcode =’1’) then            -- latch all of the inputs to the
                                         -- appropriate outputs
          hskip_reset  <= mcu_data(8);
          ram_noe      <= not mcu_data(9);   -- ram is negative true
          dig_load     <= mcu_data(10);
          dig_oe       <= mcu_data(11);
          data_av      <= mcu_data(12);

          -- the wait line is a toggle
          if (mcu_data(13) = ‘1’) then  -- set wait line
            int_wait <= ‘1’;
          elsif (mcu_data(14) = ‘1’) then
            int_wait <= ‘0’;
          end if;
        else
          -- not an assert instruction
          hskip_reset  <= ‘0’;
          ram_noe      <= ‘1’;               -- ram is negative true
          dig_load     <= ‘0’;
          dig_oe       <= ‘0’;
          data_av      <= ‘0’;
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          int_wait <= int_wait;         -- keep old value
        end if;
      end if;
    end process;

    -- pass out internal wait
    data_wait <= int_wait;
end architecture state_machine; --”architecture” is optional; for clarity

Listing 13: MCU Specification File
/* mcu.sp                                                    */
/* Specification file for digitizer MCU                      */
/* Visual Target Tracking System -- 6.111 Final project      */

/****************************************************************/
/* Instruction Word Organization:                               */
/*   conditional branches               0cccxxxx aaaaaaaa       */
/*   unconditional branches             0111xxxx aaaaaaaa       */
/*   assertion statements               1sssssss ssssssss       */
/*    where c = status selection                                */
/*          a = alternative address, i.e. jump address          */
/*          s = assertion signals                               */
/****************************************************************/

op <15:0>;               /* Indicates the available bits           */

address op <7:0>;        /* Indicates bit locations for addresses  */

value op <7:0>;

/*
 * Instruction set for your MCU
 */

CJMPop<15>=%b0;     /* Conditional JuMP */
JMPop<15:12>=%b0111;     /* unconditional JuMP */
ASSERTop<15>=%b1;     /* unconditional ASSERT */
NOP     op<15:0>=%b1000000000000000; /* do nothing (eg assert nothing)*/

/* These are defined so that you may use them to make your code more
 * readable.  Their use is not required, but it is helpful */

IF      nop;
THEN    nop;
TRUE    op<14:12>=%b111;        /* This forces a true output of the 151 */
RESETop<15:0>=%b0111000000000000;

/*
 * Assertions:
 */
XCOUNT      op<0>=1; /* increment the upper x address bits */
XRESET      op<1>=1; /* reset the upper x address bits */
YCOUNT      op<2>=1; /* increment the upper y address bits */
YRESET      op<3>=1; /* reset the upper y address bits */
OCOUNT      op<4>=1; /* increment the offset x address bits */
ORESET      op<5>=1; /* reset the offset x address bits */
OUT_LOAD    op<6>=1; /* load the output register from the data bus */
OUT_SHIFT   op<7>=1; /* output next bit */
HSKIP_RESET op<8>=1; /* miss first 16 blank horizontal lines */
RAM_OE      op<9>=1; /* read _from_ ram */
DIG_LOAD    op<10>=1; /* latch current 8 data bits */
DIG_OE      op<11>=1; /* digitizer drive bus */
DATA_AV     op<12>=1; /* signal other modules that data is ready */
WAIT_SET    op<13>=1; /* set the wait line */
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WAIT_RESET  op<14>=1; /* unset the wait line */

/*
 * Status signals:
 */
N_XFULL    op<14:12>=0; /* x counter is at 128 */
YFULL      op<14:12>=1; /* y counter is at 64 */
OFULL      op<14:12>=2; /* offset counter is at 8 */
HSYNC      op<14:12>=3; /* horizontal sync signal - negative true */
EVEN       op<14:12>=4; /* even sync signal - 1/30 sec clock */
PLAYBACK   op<14:12>=5; /* continually play back the same buffer frame(?) */
HSKIP_DONE op<14:12>=6; /* the skip counter is done */

Listing 14: MCU Assembly File
/* mcu.as                          */
/* Assembly program for digitizing NTSC to 128x64 */
/* pels for the Visual Target Tracing System */

# SPEC_FILE = mcu.sp;
# LIST_FILE = mcu.lst;
# MASK_COUNT = 8;
# SET_ADDRESS = 0; /* start at addr 0 */
# LOAD_ADDRESS = 000;

/* This part fills up the data buffer on the next rising edge of the even */
START:  ASSERT WAIT_SET;       /* tell the other kits to wait while we buffer data*/
EHI1:   IF EVEN CJMP EHI1;     /* wait for even to go low */
BEGIN:  IF EVEN CJMP FILL;     /* even is low, wait until even goes high again */
        JMP BEGIN;
FILL:   ASSERT XRESET YRESET;  /* get ready to save the first horizontal line */
WAIT:   IF HSYNC CJMP WAIT;    /* stay here until the first line (negative hsync pulse)*/
WAIT2:  IF HSYNC CJMP SKIP;    /* wait until the first line starts, then skip first 16 lines */
        JMP WAIT2;
/* now, we need to wait for the first 16 lines to pass (they are blank because NTSC sucks) */
SKIP:   ASSERT HSKIP_RESET;    /* reset the horizontal line counter */
        NOP;                   /* give time to reset */
SKIPWT: IF HSKIP_DONE CJMP SBLAST; /* 16 lines have passed */
        JMP SKIPWT;            /* still need to wait... */
SBLAST: NOP;                   /* wait for color burst to pass */
        NOP;                   /* 7 uS for color burst = 14 mcu cycles */
        NOP;
        NOP;
        NOP;
        NOP;
        NOP;
        NOP;
        NOP;
        NOP;
        NOP;
        NOP;
        NOP;
        NOP;
BLAST:  ASSERT DIG_LOAD DIG_OE;/* grab next 8 bits o’ data,  */
        ASSERT DIG_OE;         /* keep driving the bus */
        ASSERT XCOUNT;         /* get ready for next byte (ramwrite writes on this address, with
previous instructions */
        IF N_XFULL CJMP BLAST; /* stay in blast mode until we filled up x counter */
        IF YFULL CJMP VWAIT;   /* we have filled all y addresses, so we are done */
        ASSERT YCOUNT XRESET;  /* otherwise, end of line, so increment y counter, reset x */
HWAIT1: IF HSYNC CJMP HWAIT1;  /* wait for falling edge of hsync (end of this scan line) */
/* now, we are going to skip three lines (because there are 240 lines of data, and we want the
whole screen */
HWAIT2: IF HSYNC CJMP HWAIT3;  /* wait for rising edge 1 (start of next line) */
        JMP HWAIT2;
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HWAIT3: IF HSYNC CJMP HWAIT3;  /* first line is passing(active) */
HWAIT4: IF HSYNC CJMP HWAIT5;  /* wait for start of next line */
        JMP HWAIT4;
HWAIT5: IF HSYNC CJMP HWAIT5;  /* second line is passing(active) */
HWAIT6: IF HSYNC CJMP SBLAST; /* when sync goes high again, start of third line, so start buffer-
ing again */
        JMP HWAIT6;

/* This part plays back the buffer next time even is low */
VWAIT:  IF EVEN CJMP VWAIT;    /* wait until end of frame */
        JMP PLAY;              /* start playback */
PLAY:   ASSERT XRESET YRESET ORESET WAIT_RESET; /* setup for playback */
PELGO:  ASSERT RAM_OE ORESET;  /* start ram loading, reset offset counter... */
        ASSERT OUT_LOAD RAM_OE;/* latch RAM data */
PELOUT: ASSERT DATA_AV;        /* hold data so other kits can read */
        ASSERT DATA_AV;        /* hold data */
        ASSERT DATA_AV;        /* hold data */
        ASSERT DATA_AV;        /* hold data */
        ASSERT DATA_AV;        /* hold data */
        ASSERT DATA_AV;        /* hold data */
        ASSERT OCOUNT OUT_SHIFT; /* increment the offset counter and shift to next data bit */
        ASSERT OCOUNT OUT_SHIFT; /* drop res to 64x64 for other kits (now) */
        IF OFULL CJMP XINC;
        JMP PELOUT;
XINC:   IF N_XFULL CJMP XINC2; /* if x not full, increment x and output next byte */
        JMP YINC;              /* x was full, try to increment y */
XINC2:  ASSERT XCOUNT;         /* increment the x counter */
        JMP PELGO;             /* get next byte of data and play it back */
YINC:   IF YFULL CJMP DECIDE;  /* We’ve played back all the data from this frame */
        ASSERT YCOUNT XRESET;  /* goto next row of data by resetting x and incrementing y */
        JMP PELGO;             /* start the read cycle for the next row */
DECIDE: IF PLAYBACK CJMP PBACK;/* go into playback mode */
        JMP START;             /* capture new data, start again */
PBACK:  ASSERT WAIT_RESET;     /* clear the wait signal in prep for playback mode */
PLOOP:  IF EVEN CJMP PDO;      /* loop to wait for even to go high */
        JMP PLOOP;
PDO:    IF EVEN CJMP PDO;      /* stay gere until even signal goes low */
        JMP VWAIT;             /* now, jump to a place where we wait for even to go low and play
back */

Listing 15: MCU Listing File
ADR DAT  CODE
         /* mcu.as                          */
         /* Assembly program for digitizing NTSC to 128x64 */
         /* pels for the Visual Target Tracing System */

         # SPEC_FILE = mcu.sp;
         # LIST_FILE = mcu.lst;
         # MASK_COUNT = 8;
         # SET_ADDRESS = 0; /* start at addr 0 */
         # LOAD_ADDRESS = 000;

         /* This part fills up the data buffer on the next rising edge of the even */
 0  a000 START:  ASSERT WAIT_SET;       /* tell the other kits to wait while we buffer data*/
 1  4001 EHI1:   IF EVEN CJMP EHI1;     /* wait for even to go low */
 2  4004 BEGIN:  IF EVEN CJMP FILL;     /* even is low, wait until even goes high again */
 3  7002         JMP BEGIN;
 4  800a FILL:   ASSERT XRESET YRESET;  /* get ready to save the first horizontal line */

5 3005 WAIT: IF HSYNC CJMP WAIT; /* stay here until the first line (negative hsync pulse)*/
 6  3008 WAIT2:  IF HSYNC CJMP SKIP;    /* wait until the first line starts, then skip first 16
lines */
 7  7006         JMP WAIT2;

/* now, we need to wait for the first 16 lines to pass (they are blank because NTSC sucks)
*/
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 8  8100 SKIP:   ASSERT HSKIP_RESET;    /* reset the horizontal line counter */
 9  8000         NOP;                   /* give time to reset */
 a  600c SKIPWT: IF HSKIP_DONE CJMP SBLAST; /* 16 lines have passed */
 b  700a         JMP SKIPWT;            /* still need to wait... */
 c  8000 SBLAST: NOP;                   /* wait for color burst to pass */
 d  8000         NOP;                   /* 7 uS for color burst = 14 mcu cycles */
 e  8000         NOP;
 f  8000         NOP;
10  8000         NOP;
11  8000         NOP;
12  8000         NOP;
13  8000         NOP;
14  8000         NOP;
15  8000         NOP;
16  8000         NOP;
17  8000         NOP;
18  8000         NOP;
19  8000         NOP;
1a  8c00 BLAST:  ASSERT DIG_LOAD DIG_OE;/* grab next 8 bits o’ data,  */
1b  8800         ASSERT DIG_OE;         /* keep driving the bus */
1c 8001 ASSERT XCOUNT; /* get ready for next byte (ramwrite writes on this address,
with previous instructions */
1d  001a         IF N_XFULL CJMP BLAST; /* stay in blast mode until we filled up x counter */
1e  1029         IF YFULL CJMP VWAIT;   /* we have filled all y addresses, so we are done */
1f 8006 ASSERT YCOUNT XRESET; /* otherwise, end of line, so increment y counter, reset x
*/
20 3020 HWAIT1: IF HSYNC CJMP HWAIT1; /* wait for falling edge of hsync (end of this scan line)
*/

/* now, we are going to skip three lines (because there are 240 lines of data, and we want
the whole screen */
21  3023 HWAIT2: IF HSYNC CJMP HWAIT3;  /* wait for rising edge 1 (start of next line) */
22  7021         JMP HWAIT2;
23  3023 HWAIT3: IF HSYNC CJMP HWAIT3;  /* first line is passing(active) */
24  3026 HWAIT4: IF HSYNC CJMP HWAIT5;  /* wait for start of next line */
25  7024         JMP HWAIT4;
26  3026 HWAIT5: IF HSYNC CJMP HWAIT5;  /* second line is passing(active) */
27 300c HWAIT6: IF HSYNC CJMP SBLAST; /* when sync goes high again, start of third line, so start
buffering again */
28  7027         JMP HWAIT6;

         /* This part plays back the buffer next time even is low */
29  4029 VWAIT:  IF EVEN CJMP VWAIT;    /* wait until end of frame */
2a  702b         JMP PLAY;              /* start playback */
2b  c02a PLAY:   ASSERT XRESET YRESET ORESET WAIT_RESET; /* setup for playback */
2c  8220 PELGO:  ASSERT RAM_OE ORESET;  /* start ram loading, reset offset counter... */
2d  8240         ASSERT OUT_LOAD RAM_OE;/* latch RAM data */
2e  9000 PELOUT: ASSERT DATA_AV;        /* hold data so other kits can read */
2f  9000         ASSERT DATA_AV;        /* hold data */
30  9000         ASSERT DATA_AV;        /* hold data */
31  9000         ASSERT DATA_AV;        /* hold data */
32  9000         ASSERT DATA_AV;        /* hold data */
33  9000         ASSERT DATA_AV;        /* hold data */
34  8090         ASSERT OCOUNT OUT_SHIFT; /* increment the offset counter and shift to next data
bit */
35  8090         ASSERT OCOUNT OUT_SHIFT; /* drop res to 64x64 for other kits (now) */
36  2038         IF OFULL CJMP XINC;
37  702e         JMP PELOUT;
38  003a XINC:   IF N_XFULL CJMP XINC2; /* if x not full, increment x and output next byte */
39  703c         JMP YINC;              /* x was full, try to increment y */
3a  8001 XINC2:  ASSERT XCOUNT;         /* increment the x counter */
3b  702c         JMP PELGO;             /* get next byte of data and play it back */
3c  103f YINC:   IF YFULL CJMP DECIDE;  /* We’ve played back all the data from this frame */
3d 8006 ASSERT YCOUNT XRESET; /* goto next row of data by resetting x and incrementing y
*/
3e  702c         JMP PELGO;             /* start the read cycle for the next row */
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3f  5041 DECIDE: IF PLAYBACK CJMP PBACK;/* go into playback mode */
40  7000         JMP START;             /* capture new data, start again */
41  c000 PBACK:  ASSERT WAIT_RESET;     /* clear the wait signal in prep for playback mode */
42  4044 PLOOP:  IF EVEN CJMP PDO;      /* loop to wait for even to go high */
43  7042         JMP PLOOP;
44  4044 PDO:    IF EVEN CJMP PDO;      /* stay gere until even signal goes low */
45  7029         JMP VWAIT;             /* now, jump to a place where we wait for even to go low
and play back */

Appendix B: Target Detection VHDL and MCU code

Listing 16: Detector 4 (detector4.vhd)
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity detector is

  generic (
    num_width : integer := 19;
    den_width : integer := 12;
    quo_width : integer := 7);

  port (
    clk, eof, data_in, data_avail, reset : in  std_logic;
    data_out, data_rdy,restart           : out std_logic;
--    state : out std_logic_vector (1 downto 0);
    mode                           : out std_logic);

      ATTRIBUTE pin_avoid of detector :ENTITY is

--    “ 1 2 11 21 22 32 42 43 44 53 63 64 74 83”& -- Vdd, Gnd, VPP

      “ 12 19 73  “&      -- These pins are the interconnect bus
                          -- for CPLD 2, 3, and 4. They are Serial I/O
                          -- pins for CPLD 1.

      “ 13         “&     -- This is I0-9. Can screw up the clock of C1. Be
                          -- careful when using this.

--        The CPLD has 4 clock pins that can also be used as input pins.
--        However, all of them are tied together.
--        The 4 clock pins are “ 20 23 62 65 “ .
--        Depending on your design, the programmer will assign of them
--        to be the clock input, and use the others as general-purpose inputs.
--        This can be quite frustrating.
--        We will thus disable 3 of the 4 and hope the compiler likes our
--        choice. If it doesn’t, we will just have to pick another one.

--       Lets use clock 1 and disable clock 2,3, and 4.

         “ 23 62 65 “&

--       If we need to use clock 2 : then use  “ 20 62 65 “&
--       If we need to use clock 3 : then use  “ 20 23 65 “&
--       If we need to use clock 4 : then use  “ 20 23 62 “&
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     “ 14 35 41 51 72 “; -- Used by Programmer. No external connection.

    ATTRIBUTE pin_numbers of detector : ENTITY is
      “ clk:20 reset:24 eof:25 data_avail:26 data_in:27 “  &
--      “ state(0):69  state(1):70 “   &
      “ data_out:38  data_rdy:39  mode:40 restart:47 “  ;

end detector;

architecture workings of detector is

  type StateType is (Resetstate, Loadstate, Average);
  signal previous_state, next_state : StateType := ResetState;
  signal count : std_logic_vector (4 downto 0);
  signal state : std_logic_vector (1 downto 0);
  signal pulse1 : std_logic;
 begin  -- workings

 fsm:process(previous_state, eof, data_in, data_avail, count, pulse1)
  begin
    case previous_state is

      when Resetstate => state <= “00”;  -- Reset state of FSM
        mode <= ‘0’; restart <= ‘1’;
        if (eof = ‘1’) then
          next_state <= Resetstate;
        else
          next_state <= Loadstate;
        end if;
        data_rdy <= ‘0’;
      when Loadstate => state <= “01”;  -- Load State
        mode <= ‘0’; restart <= ‘0’;
        if (eof=’1’) then
          next_state <= Average;
        else
          data_out<= (data_in and data_avail) and (not pulse1);
          next_state <= Loadstate;
        end if;

      when Average => state <= “10”;    -- Averaging State
        mode <= ‘1’; restart <= ‘0’;
        if (count=quo_width) then
          data_rdy <= ‘1’;
          next_state <= Resetstate;
        else
          data_rdy <= ‘0’;

          next_state <= Average;
        end if;

      when others => null;
    end case;
  end process;

 state_clocked: process(clk)
  begin
    if rising_edge(clk) then
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      if (reset = ‘1’)  then
        previous_state <= Resetstate;
      else
        previous_state <= next_state;
      end if;
       pulse1 <= data_in;
      if (previous_state = Average) then
        count <= count + 1;
      else
        count <= (others => ‘0’);
      end if;
    end if;
  end process state_clocked;

 end workings;

Listing 17: Divider 4 (divider4.vhd)
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity divider is

  generic(num_width : integer := 18;
          den_width : integer := 12;
          quo_width : integer := 6);
  port (
    clk, enable : in  std_logic;
    mode, reset   : in  std_logic;
    address               : in  std_logic_vector(quo_width downto 0);
    target                : out std_logic);

      ATTRIBUTE pin_avoid of divider :ENTITY is

--    “ 1 2 11 21 22 32 42 43 44 53 63 64 74 83”& -- Vdd, Gnd, VPP

      “ 12 19 73  “&      -- These pins are the interconnect bus
                          -- for CPLD 2, 3, and 4. They are Serial I/O
                          -- pins for CPLD 1.

      “ 13         “&     -- This is I0-9. Can screw up the clock of C1. Be
                          -- careful when using this.

--        The CPLD has 4 clock pins that can also be used as input pins.
--        However, all of them are tied together.
--        The 4 clock pins are “ 20 23 62 65 “ .
--        Depending on your design, the programmer will assign of them
--        to be the clock input, and use the others as general-purpose inputs.
--        This can be quite frustrating.
--        We will thus disable 3 of the 4 and hope the compiler likes our
--        choice. If it doesn’t, we will just have to pick another one.

--       Lets use clock 1 and disable clock 2,3, and 4.

         “ 23 62 65 “&

--       If we need to use clock 2 : then use  “ 20 62 65 “&
--       If we need to use clock 3 : then use  “ 20 23 65 “&
--       If we need to use clock 4 : then use  “ 20 23 62 “&
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     “ 14 35 41 51 72 “; -- Used by Programmer. No external connection.

  ATTRIBUTE pin_numbers of divider : ENTITY is
      “ clk:20 enable:45 reset:60 mode:46 “ &
      “ address(0):28 address(1):29 address(2):30 address(3):31 “ &
      “ address(4):33 address(5):34 address(6):36 “ &
      “ target:48 “;

end divider;

architecture workings of divider is

  signal load : std_logic;
  signal difference : std_logic_vector (den_width downto 0);
  signal num : std_logic_vector (num_width downto 0);
  signal den : std_logic_vector (den_width downto 0);

begin  -- workings

  load <= ‘0’ when (den>num(num_width downto quo_width))
          else ‘1’;
  difference <= num(num_width downto quo_width)- den;

  mode_select: process (clk, mode, reset, enable)
  begin  -- process mode_select
    if falling_edge(clk) then

     case mode is
      when ‘0’ =>
        if (reset = ‘1’) then
          num <= (others => ‘0’);
          den <= (others => ‘0’);
          target <= ‘0’;

        elsif (enable = ‘1’) then
          num <= num + address;
          den <= den + 1;
        end if;
      when ‘1’ =>
          if (load = ‘1’) then
            num <= (difference(den_width-1 downto 0)) &
                   (num(quo_width-1 downto 0)) & ‘0’;
          else
           num <= num (num_width-1 downto 0) & ‘0’;
          end if;

        target <= load;

      when others => null;
     end case;

     end if;

     end process mode_select;
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end workings;

Listing 18: Divider 4a (divider4a.vhd)
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity divider is

  generic(num_width : integer := 18;
          den_width : integer := 12;
          quo_width : integer := 6);
  port (
    clk, enable : in  std_logic;
    mode, reset   : in  std_logic;
    address               : in  std_logic_vector(quo_width downto 0);
    target                : out std_logic);

      ATTRIBUTE pin_avoid of divider :ENTITY is

--    “ 1 2 11 21 22 32 42 43 44 53 63 64 74 83”& -- Vdd, Gnd, VPP

      “ 12 19 73  “&      -- These pins are the interconnect bus
                          -- for CPLD 2, 3, and 4. They are Serial I/O
                          -- pins for CPLD 1.

      “ 13         “&     -- This is I0-9. Can screw up the clock of C1. Be
                          -- careful when using this.

--        The CPLD has 4 clock pins that can also be used as input pins.
--        However, all of them are tied together.
--        The 4 clock pins are “ 20 23 62 65 “ .
--        Depending on your design, the programmer will assign of them
--        to be the clock input, and use the others as general-purpose inputs.
--        This can be quite frustrating.
--        We will thus disable 3 of the 4 and hope the compiler likes our
--        choice. If it doesn’t, we will just have to pick another one.

--       Lets use clock 1 and disable clock 2,3, and 4.

         “ 23 62 65 “&

--       If we need to use clock 2 : then use  “ 20 62 65 “&
--       If we need to use clock 3 : then use  “ 20 23 65 “&
--       If we need to use clock 4 : then use  “ 20 23 62 “&

     “ 14 35 41 51 72 “; -- Used by Programmer. No external connection.

  ATTRIBUTE pin_numbers of divider : ENTITY is
      “ clk:20 enable:45 reset:60 mode:46 “ &
      “ address(0):50 address(1):52 address(2):54 address(3):55 “ &
      “ address(4):56 address(5):57 address(6):58 “ &
      “ target:49 “;

end divider;
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architecture workings of divider is

  signal load : std_logic;
  signal difference : std_logic_vector (den_width downto 0);
  signal num : std_logic_vector (num_width downto 0);
  signal den : std_logic_vector (den_width downto 0);

begin  -- workings

  load <= ‘0’ when (den>num(num_width downto quo_width))
          else ‘1’;
  difference <= num(num_width downto quo_width)- den;

  mode_select: process (clk, mode, reset, enable)
  begin  -- process mode_select
    if falling_edge(clk) then

     case mode is
      when ‘0’ =>
        if (reset = ‘1’) then
          num <= (others => ‘0’);
          den <= (others => ‘0’);
          target <= ‘0’;

        elsif (enable = ‘1’) then
          num <= num + address;
          den <= den + 1;
        end if;
      when ‘1’ =>
          if (load = ‘1’) then
            num <= (difference(den_width-1 downto 0)) &
                   (num(quo_width-1 downto 0)) & ‘0’;
          else
           num <= num (num_width-1 downto 0) & ‘0’;
          end if;

        target <= load;

      when others => null;
     end case;

     end if;

     end process mode_select;

end workings;

Listing 19: Quotient (quotient.vhd)
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

-------------------------------------------------------------------------------
--quotient de-serializer for a c22v10 pal on a palace22v10-25pc/pi device

entity quotient is

  generic (
    width : integer := 6);
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  port (
    mode, load, clk, rdy_in    : in  std_logic;
    average                    : out std_logic_vector (width downto 0);
--    pan_high, pan_low          : out std_logic;
    rdy_out, blank             : out std_logic);

      ATTRIBUTE pin_numbers of quotient : ENTITY is
          “ clk:1 mode:2 load:3 rdy_in:4”  &
        “ average(0):23 average(1):22 average(2):21 “  &
        “ average(3):17 average(4):16 average(5):15 “  &
        “ average(6):14 blank:20 rdy_out:18 “ ;

end quotient;

architecture workings of quotient is

    signal int_quotient, allones, mid : std_logic_vector (width downto 0);
  --  signal help : std_logic;
begin  -- workings

  allones <= (others => ‘1’);
  mid <= “0100000”;
  average <= int_quotient;
--  help <= load;

  clocked: process (clk, mode, rdy_in, int_quotient)
  begin  -- process clocked
    if rising_edge(clk) then
      rdy_out <= not mode ;
      if (mode = ‘1’) then
        if (rdy_in = ‘1’) then
          if (int_quotient = allones) then
             int_quotient <= mid;
             blank <= ‘1’;
--          elsif (int_quotient < mid-2) then
--            pan_high <= ‘1’; pan_low <= ‘0’;
--          elsif (int_quotient > mid+1) then
--            pan_high <= ‘0’; pan_low <= ‘1’;
          else
--            pan_high <= ‘0’; pan_low <= ‘0’;
            blank <= ‘0’;
            int_quotient <= int_quotient;

          end if;

        else
          int_quotient <= int_quotient(width-1 downto 0) & load;
          blank <= ‘0’;
        end if;
      else
        int_quotient <= int_quotient;
      end if;

    end if;
  end process clocked;

end workings;
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Listing 20: Sound FSM (sound.vhd)
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity sound is

  generic (
   prom_width : integer := 14;
   wait_width : integer := 12;
   topcount   : integer := 4);

  port (
    clk, reset : in  std_logic;
    data       : in std_logic_vector(4 downto 0);
--    state      : out std_logic_vector (1 downto 0);
    sound_clk  : out std_logic_vector(prom_width downto 0));

      ATTRIBUTE pin_avoid of sound :ENTITY is

--    “ 1 2 11 21 22 32 42 43 44 53 63 64 74 83”& -- Vdd, Gnd, VPP

      “ 12 19 73  “&      -- These pins are the interconnect bus
                          -- for CPLD 2, 3, and 4. They are Serial I/O
                          -- pins for CPLD 1.

      “ 13         “&     -- This is I0-9. Can screw up the clock of C1. Be
                          -- careful when using this.

--        The CPLD has 4 clock pins that can also be used as input pins.
--        However, all of them are tied together.
--        The 4 clock pins are “ 20 23 62 65 “ .
--        Depending on your design, the programmer will assign of them
--        to be the clock input, and use the others as general-purpose inputs.
--        This can be quite frustrating.
--        We will thus disable 3 of the 4 and hope the compiler likes our
--        choice. If it doesn’t, we will just have to pick another one.

--       Lets use clock 1 and disable clock 2,3, and 4.

         “ 23 62 65 “&

--       If we need to use clock 2 : then use  “ 20 62 65 “&
--       If we need to use clock 3 : then use  “ 20 23 65 “&
--       If we need to use clock 4 : then use  “ 20 23 62 “&

     “ 14 35 41 51 72 “; -- Used by Programmer. No external connection.

    ATTRIBUTE pin_numbers of sound : ENTITY is
      “ clk:20 reset:49 “ &
      “ sound_clk(0):24  sound_clk(1):25  sound_clk(2):26  sound_clk(3):27  “ &
      “ sound_clk(4):28  sound_clk(5):29  sound_clk(6):30  sound_clk(7):31  “ &
      “ sound_clk(8):33  sound_clk(9):34  sound_clk(10):36 sound_clk(11):37 “ &
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      “ sound_clk(12):38  sound_clk(13):39  sound_clk(14):40  “ &
      “ data(0):50  data(1):52  data(2):54  data(3):55  data(4):56  “ ;

end sound;

architecture workings of sound is

  type StateType is (Resetstate, Countdown, Output, Wait_state);
  signal previous_state, next_state : StateType := ResetState;
  signal count, allones : std_logic_vector (prom_width downto 0);
  signal state_count, allones2 : std_logic_vector (wait_width downto 0);
  signal state : std_logic_vector (1 downto 0);

begin  -- workings

allones <= (others => ‘1’);
allones2 <= (others => ‘1’);
sound_clk <= count;

 fsm:process(previous_state, allones, allones2, state_count, count, data)
  begin
    case previous_state is

      when Resetstate => state <= “00”;
        next_state <= Countdown;

      when Countdown => state <= “01”;
        if (data > 0) then
          next_state <= Resetstate;
        elsif (state_count = allones2) then
          next_state <= Output;
        else
          next_state <= Countdown;
        end if;

      when Output => state <= “10”;
        if (count = allones) then
          next_state <= Wait_state;
        else
          next_state <= Output;
        end if;

      when Wait_state => state <= “11”;
        if (data > 0) then
          next_state <= Resetstate;
        else
          next_state <= Wait_state;
        end if;

      when others => null;
    end case;
  end process;

 state_clocked: process(clk)
  begin
    if rising_edge(clk) then
      if (reset = ‘1’)  then
        previous_state <= Resetstate;
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      else
        previous_state <= next_state;
      end if;

      if (previous_state = Countdown) then
        state_count <= state_count + 1;
      else
        state_count <= (others => ‘0’);
      end if;

      if (previous_state = Output) then
        count <= count + 1;
      else
        count <= (others => ‘0’);
      end if;
    end if;
  end process state_clocked;

 end workings;

Appendix C: Video Output VHDL and MCU code

Listing 21: Main CPLD logic (main.vhd)
-- This is the CPLD logic for the main counter, as well as the address
-- generation for memory modification.  It can either drive a straight
-- 10-bit count, or perform the addition to the symbol data and output
-- the results used to modify pixel color.

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
-- here is the entity
entity offset is
  port (clk, symbol, enable, copy, clearcount, increment : in std_logic;
countfull, symboldone: buffer std_logic;
indata : in std_logic_vector(7 downto 0);
detector : in std_logic_vector(11 downto 0);
outaddr : out std_logic_vector(9 downto 0);
outcount : out std_logic_vector(7 downto 0);
outpixel : out std_logic_vector(1 downto 0));

ATTRIBUTE pin_numbers of offset :ENTITY is
“outpixel(0):24  outpixel(1):25  “&
“outaddr(0):26  outaddr(1):27  outaddr(2):28  outaddr(3):29  “&
“outaddr(4):30  outaddr(5):31  outaddr(6):33  outaddr(7):34  “&
“outaddr(8):36  outaddr(9):37  “&

“symbol:39  enable:40  copy:45  clearcount:46  increment:47  “&
“countfull:48  symboldone:49  “&

“indata(0):50  indata(1):52  indata(2):54  indata(3):55  “&
“indata(4):56  indata(5):57  indata(6):58  indata(7):59  “&
“detector(0):3  detector(1):4  detector(2):5  detector(3):6  “&
“detector(4):7  detector(5):8  detector(6):9  detector(7):10  “&
“detector(8):15  detector(9):16  detector(10):17  detector(11):18  “&

“outcount(0):75  outcount(1):76  outcount(2):77  outcount(3):78  “&
“outcount(4):79  outcount(5):80  outcount(6):81  outcount(7):82  “;

end offset;
-- here is the architcture
architecture behavioral of offset is
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signal int_offset, detector_sync : std_logic_vector(11 downto 0);
signal sixzeros : std_logic_vector(5 downto 0);
signal intcnt, int_addr : std_logic_vector(9 downto 0);
begin
clocked: process (clk)
begin
if rising_edge(clk) then
if clearcount = ‘1’ then
intcnt <= “0000000000”;
countfull <= ‘0’;
symboldone <= ‘0’;
elsif (intcnt = “1111111111”) then
countfull <= ‘1’;
elsif (increment = ‘1’) then
if ((symbol = ‘0’) AND (intcnt = “0000011010”)) then
symboldone <= ‘1’;
elsif ((symbol = ‘1’) AND (intcnt = “0000001111”)) then
symboldone <= ‘1’;
end if;
intcnt <= intcnt + 1;
else
countfull <= countfull;
symboldone <= symboldone;
end if;
if (symbol = ‘1’) then
-- Y
if ((detector_sync(11 downto 6) = “000000”) OR
(detector_sync(11 downto 6) = “000001”) OR
(detector_sync(11 downto 6) = “000010”) OR
(detector_sync(11 downto 6) = “000011”) OR
(detector_sync(11 downto 6) = “000100”)) then
int_offset(11 downto 6) <= sixzeros + indata(7 downto 4);
elsif((detector_sync(11 downto 6) = “111111”) OR
(detector_sync(11 downto 6) = “111110”) OR
(detector_sync(11 downto 6) = “111101”) OR
(detector_sync(11 downto 6) = “111100”)) then
int_offset(11 downto 6) <= (sixzeros + 55) + indata(7 downto 4);
else
int_offset(11 downto 6) <= (detector_sync(11 downto 6) - 4) + indata(7 downto 4);
end if;
-- X
if ((detector_sync(5 downto 0) = “000000”) OR
(detector_sync(5 downto 0) = “000001”) OR
(detector_sync(5 downto 0) = “000010”) OR
(detector_sync(5 downto 0) = “000011”) OR
(detector_sync(5 downto 0) = “000100”)) then
int_offset(5 downto 0) <= sixzeros + indata(3 downto 0);
elsif((detector_sync(5 downto 0) = “111111”) OR
(detector_sync(5 downto 0) = “111110”) OR
(detector_sync(5 downto 0) = “111101”) OR
(detector_sync(5 downto 0) = “111100”)) then
int_offset(5 downto 0) <= (sixzeros + 55) + indata(3 downto 0);
else
int_offset(5 downto 0) <= (detector_sync(5 downto 0) - 4) + indata(3 downto 0);
end if;
else
int_offset(11 downto 6) <= (sixzeros + 28) + indata(7 downto 4);
int_offset(5 downto 0) <= (sixzeros + 28) + indata(3 downto 0);
end if;
detector_sync <= detector;
end if;
end process clocked;
mux: process (copy, intcnt, int_offset)
begin
if (copy = ‘1’) then
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int_addr <= intcnt;
else
int_addr <= int_offset(11 downto 2);
end if;
end process mux;
enable: process (enable)
begin
if (enable = ‘1’) then
outaddr <= int_addr;
outpixel <= int_offset(1 downto 0);
else
outaddr <= “ZZZZZZZZZZ”;
outpixel <= “ZZ”;
end if;
end process enable;
outcount <= intcnt(7 downto 0);
sixzeros <= “000000”;
end behavioral;

Listing 22: Store logic (store.vhd)
-- This PAL takes the data from the Digitizer and packs it into bytes,
-- each containing four pixels worth of data.  Once the byte is ready
-- and the bus is clear, the data can be driven to the bus.

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
-- here is the entity
entity store is
  port (clk, data, load, enable: in std_logic;
pixel : in std_logic_vector(1 downto 0);
outdata : out std_logic_vector(7 downto 0));

ATTRIBUTE pin_numbers of store :ENTITY is
“enable:2    load:3    data:4   pixel(0):5   pixel(1):6   “&
“outdata(0):23    outdata(1):22    outdata(2):21    outdata(3):20    “&
“outdata(4):19    outdata(5):18    outdata(6):17    outdata(7):16    “;

end store;
-- here is the architcture
architecture behavioral of store is
signal int_data : std_logic_vector(7 downto 0);
begin
clocked: process (clk)
begin
if rising_edge(clk) then
if (load = ‘1’) then
if pixel = “00” then
int_data(0) <= data;
int_data(1) <= ‘0’;
elsif pixel = “01” then
int_data(2) <= data;
int_data(3) <= ‘0’;
elsif pixel = “10” then
int_data(4) <= data;
int_data(5) <= ‘0’;
else
int_data(6) <= data;
int_data(7) <= ‘0’;
end if;
else
int_data <= int_data;
end if;
end if;
end process clocked;
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enable: process (enable, int_data)
begin
if (enable = ‘1’) then
outdata <= int_data;
else
outdata <= “ZZZZZZZZ”;
end if;
end process enable;
end behavioral;

Listing 23: Modify logic(modify.vhd)
-- This PAL is used to change the color value of a pixel
-- specified by the signal “pixel” to the desired color.
-- Once the input byte is received, it is modified.
-- The output is enabled once the bus is clear.

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
-- here is the entity
entity modify is
  port (clk, color, load, enable: in std_logic;
pixel : in std_logic_vector(1 downto 0);
indata : in std_logic_vector(7 downto 0);
outdata : out std_logic_vector(7 downto 0));

ATTRIBUTE pin_numbers of modify :ENTITY is
“enable:10    load:11    color:13   pixel(0):15   pixel(1):14   “&
“indata(0):2    indata(1):3    indata(2):4    indata(3):5    “&
“indata(4):6    indata(5):7    indata(6):8    indata(7):9    “&
“outdata(0):23    outdata(1):22    outdata(2):21    outdata(3):20    “&
“outdata(4):19    outdata(5):18    outdata(6):17    outdata(7):16    “;

end modify;
-- here is the architcture
architecture behavioral of modify is
signal int_data : std_logic_vector(7 downto 0);
begin
clocked: process (clk)
begin
if rising_edge(clk) then
if (load = ‘1’) then
int_data <= indata;
if pixel = “00” then
int_data(0) <= color;
int_data(1) <= ‘1’;
elsif pixel = “01” then
int_data(2) <= color;
int_data(3) <= ‘1’;
elsif pixel = “10” then
int_data(4) <= color;
int_data(5) <= ‘1’;
else
int_data(6) <= color;
int_data(7) <= ‘1’;
end if;
else
int_data <= int_data;
end if;
end if;
end process clocked;
enable: process (enable)
begin
if (enable = ‘1’) then
outdata <= int_data;
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else
outdata <= “ZZZZZZZZ”;
end if;
end process enable;

end behavioral;

Listing 24: Detector latch (dlatch.vhd)
-- This PAL is used to latch data coming from the Detector Unit.
-- Since a total of 12 bits of data are being sent, two of these
-- PALs are used.

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
-- here is the entity
entity dlatch is
  port (clk, load : in std_logic;
indata : in std_logic_vector(5 downto 0);
outdata : buffer std_logic_vector(5 downto 0));

ATTRIBUTE pin_numbers of dlatch :ENTITY is
“load:13  “&
“indata(0):2    indata(1):3    indata(2):4    “&
“indata(3):5     indata(4):6    indata(5):7    “&
“outdata(0):23    outdata(1):22    outdata(2):21    “&
“outdata(3):20    outdata(4):19    outdata(5):18    “;

end dlatch;
-- here is the architcture
architecture behavioral of dlatch is
begin
clocked: process (clk)
begin
if rising_edge(clk) then
if (load = ‘1’) then
outdata <= indata;
else
outdata <= outdata;
end if;
end if;
end process clocked;
end behavioral;

Listing 25: Overlay images (images.dat)
/*  This file contains the images for both the box and the crosshair */
/*  They are seperated by a block of NULL padding to comply with the */
/*  addressing scheme used by the Video Output Unit.  */

# SET_ADDRESS = 0;

# BASE = BINARY;

/* BOX - 28 DATA POINTS */

/* TOP */

00000000 00000001 00000010 00000011
00000100 00000101 00000110 00000111

/* SIDES */

00010000 00010111
00100000 00100111
00110000 00110111
01000000 01000111
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01010000 01010111
01100000 01100111

/* BOTTOM */

01110000 01110001 01110010 01110011
01110100 01110101 01110110 01110111

/* PADDING */

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
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00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

/* CROSSHAIR - 17 DATA POINTS*/

00000000 00001000
00010001 00010111
00100010 00100110
00110011 00110101
01000100
01010101 01010011
01100110 01100010
01110111 01110001
10001000 10000000

Listing 26: Tristate logic 1 (vtrist1.vhd)
-- This is one of two PALs used to handle the tristate enable conditions
-- to the VRAM.  It is necessary to give both the SRAM, and the MC6847
-- access to its control signals and data lines.  This PAL in particular
-- handles the address bus.

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
-- here is the entity
entity vtrist1 is
  port (n_fs : in std_logic;
indata : in std_logic_vector(9 downto 0);
outdata : out std_logic_vector(9 downto 0));

ATTRIBUTE pin_numbers of vtrist1 :ENTITY is
“n_fs:13  “&
“indata(0):2    indata(1):3    indata(2):4    indata(3):5  “&
“indata(4):6    indata(5):7    indata(6):8    indata(7):9  “&
“indata(8):10    indata(9):11  “&
“outdata(0):23    outdata(1):22    outdata(2):21   outdata(3):20  “&
“outdata(4):19    outdata(5):18    outdata(6):17   outdata(7):16  “&
“outdata(8):15   outdata(9):14  “;
end vtrist1;
-- here is the architcture
architecture behavioral of vtrist1 is
begin
enable: process (n_fs, indata)
begin
if (n_fs = ‘0’) then
outdata <= indata;
else
outdata <= “ZZZZZZZZZZ”;
end if;
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end process enable;
end behavioral;

Listing 27: Tristate logic 2 (vtrist2.vhd)
-- This is one of two PALs used to handle the tristate enable conditions
-- to the VRAM.  It is necessary to give both the SRAM, and the MC6847
-- access to its control signals and data lines.  This PAL in particular
-- handles the data bus and control signals.

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
-- here is the entity
entity vtrist2 is
  port (n_fs, inwrite : in std_logic;

outoe, outwe : out std_logic;
indata : in std_logic_vector(7 downto 0);
outdata : out std_logic_vector(7 downto 0));

ATTRIBUTE pin_numbers of vtrist2 :ENTITY is
“n_fs:13  inwrite:1  outoe:14  outwe:15  “&
“indata(0):2    indata(1):3    indata(2):4    indata(3):5  “&
“indata(4):6    indata(5):7    indata(6):8    indata(7):9  “&
“outdata(0):16    outdata(1):17    outdata(2):18   outdata(3):19  “&
“outdata(4):20    outdata(5):21    outdata(6):22   outdata(7):23  “;

end vtrist2;
-- here is the architcture
architecture behavioral of vtrist2 is
begin
enable: process (n_fs, indata, inwrite)
begin
if (n_fs = ‘0’) then
outdata <= indata;
outoe <= inwrite;
outwe <= inwrite;
else
outdata <= “ZZZZZZZZ”;
outoe <= ‘0’;
outwe <= ‘1’;
end if;
end process enable;
end behavioral;

Listing 28: Video color mapping logic (video.vhd)
-- This PAL is used to map the chroma and luminance signals from
-- the MC6847 to the appropriate RGB values.  This logic converts the
-- four output colors to Black, White, Red, and Blue.  The dual outputs
-- for each color are fed as inputs to S38 chips which are necessary
-- to drive the output signal, as they have open-collector outputs.

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
-- here is the entity
entity video is
  port (l, ah, al, bh, bl : in std_logic;
r1, r2, g1, g2, y1, y2, b1, b2 : out std_logic);

ATTRIBUTE pin_numbers of video :ENTITY is
“l:2    ah:3    al:4   bh:5   bl:6   “&
“r1:23    r2:22    g1:21    g2:20    “&
“y1:19    y2:18    b1:17    b2:16    “;

end video;
-- here is the architcture
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architecture behavioral of video is
begin
r1 <= NOT ah;
r2 <= NOT bh;
g1 <= NOT bh;
g2 <= NOT bh;
y1 <= ‘0’;
y2 <= ‘0’;
b1 <= NOT bh;
b2 <= NOT (bl and (NOT al));

end behavioral;

Listing 29: MCU specification file(mcu.sp)
/* mcu.sp                                                    */
/* Main Specification file    */
/* Video Output Unit                                        */
/* Chris Lyon, 5-6-01                                            */

/****************************************************************/
/* Instruction Word Organization:                               */
/*   conditional branches               0cccxxxx aaaaaaaa       */
/*   unconditional branches             0111xxxx aaaaaaaa       */
/*   assertion statements               1sssssss ssssssss       */
/*    where c = status selection                                */
/*          a = alternative address, i.e. jump address          */
/*          s = assertion signals                               */
/****************************************************************/

op <15:0>;               /* Indicates the available bits           */

address op <7:0>;        /* Indicates bit locations for addresses  */

value op <7:0>;

/*
 * Instruction set for your MCU
 */

CJMPop<15>=%b0;/* Conditional JuMP */
JMPop<15:12>=%b0111;/* unconditional JuMP */
ASSERTop<15>=%b1;/* unconditional ASSERT */

/* These are defined so that you may use them to make your code more
 * readable.  Their use is not required. */

IF      nop;
THEN    nop;
TRUE    op<14:12>=%b111;        /* This forces a true output of the 151 */
RESETop<15:0>=%b0111000000000000;

/*
 * Assertions:
 * You probably want to register these in a PAL.  Remember that many
 * of the assertions in your system are level-sensitive, so a glitch will
 * cause unexpected behavior.
 */

VWRITEop<0>=1;
RAMOEop<1>=1;
RAMWEop<2>=1;
CLEARCOUNTop<3>=1;
INCREMENTop<4>=1;
COPYop<5>=1;
MENABLEop<6>=1;
SENABLEop<7>=1;
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MODENABLEop<8>=1;
MODLOADop<9>=1;
SYMBOLop<10>=1;
DETLOADop<11>=1;
SLOADop<12>=1;

/*
 * Status signals:
 * Make sure that all status signals that change during mcu operation
 * are synchronized to the system /CLK
 */

FSop<14:12>=0;
COUNTFULLop<14:12>=1;
SYMBOLDONEop<14:12>=2;
WAITop<14:12>=3;
DATAAVAILop<14:12>=4;

Listing 30: MCU assembly code (mcu.as)
/* mcu.as                                                    */
/* Main Assembly File    */
/* Video Output Unit                                        */
/* Chris Lyon, 5-6-01                                            */

# SPEC_FILE = main.sp;   /* This statement is required at the
                           beginning of the ASSEM_FILE. It tells
                           where the SPEC_FILE can be found. */

# LIST_FILE = main.lst;  /* This statement specifies the name for
                           the assembler listing file.  If not
                           included, no listing will be created */

# MASK_COUNT = 8;       /* This statement is required to mask out 8
                           bits of the 16 bit op-code to produce 2 PROM
                           files. Use with the ‘assem16to8’ command. */

# SET_ADDRESS = 0;      /* This statement tells the program at what
                           address to start assembling. The address
                           given is a hexadecimal number. */

# LOAD_ADDRESS = 000;      /* This statement, if used AFTER the
                           SET_ADDRESS statement, determines the
                           beginning PROM address for the program
                           image. The address is in HEX.  */

BEGIN:
IF WAIT CJMP WAITHIGH;
JMP BEGIN;

WAITHIGH:
IF WAIT CJMP WAITHIGH;
/* falling edge of wait */

STORE:
/* clear the counter, and begin enabling the output */
ASSERT CLEARCOUNT MENABLE COPY;

DATAHOLD0:
IF DATAAVAIL CJMP DATAHOLD0;
/* dataavail has gone low */
DATAWAIT0:
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IF DATAAVAIL CJMP PIXEL0;
JMP DATAWAIT0;
/*rising edge of dataavail */
PIXEL0:
/* grab first pixel */
ASSERT MENABLE COPY SLOAD;
ASSERT MENABLE COPY;
/* wait for next rising edge of dataavail */

DATAHOLD1:
IF DATAAVAIL CJMP DATAHOLD1;
/* dataavail has gone low */
DATAWAIT1:
IF DATAAVAIL CJMP PIXEL1;
JMP DATAWAIT1;
/*rising edge of dataavail */
PIXEL1:
/* grab second pixel */
ASSERT MENABLE COPY SLOAD;
ASSERT MENABLE COPY;

DATAHOLD2:
IF DATAAVAIL CJMP DATAHOLD2;
/* dataavail has gone low */
DATAWAIT2:
IF DATAAVAIL CJMP PIXEL2;
JMP DATAWAIT2;
/*rising edge of dataavail */
PIXEL2:
/* grab third pixel */
ASSERT MENABLE COPY SLOAD;
ASSERT MENABLE COPY;
/* wait for next rising edge of dataavail */

DATAHOLD3:
IF DATAAVAIL CJMP DATAHOLD3;
/* dataavail has gone low */
DATAWAIT3:
IF DATAAVAIL CJMP PIXEL3;
JMP DATAWAIT3;
/*rising edge of dataavail */
PIXEL3:
/* grab third pixel */
ASSERT MENABLE COPY SLOAD;
ASSERT MENABLE COPY;

STOREBYTE:

/* make the store pal drive the databus */
ASSERT MENABLE COPY SENABLE;
/* write pulse */
ASSERT MENABLE COPY SENABLE RAMOE RAMWE;
ASSERT MENABLE COPY SENABLE;
/* check to see if counter is full */
IF COUNTFULL CJMP DONESTORE;
/* increment counter */
ASSERT MENABLE COPY INCREMENT;
ASSERT MENABLE COPY;
JMP DATAHOLD0;

DONESTORE:
JMP DOBOX;
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DOBOX:
ASSERT MENABLE;
ASSERT CLEARCOUNT MENABLE;
/* location of first pixel should now be stable output */
BOXLOOP:
/* make the ram drive the databus */
ASSERT MENABLE RAMOE;
/* ram is outputting original byte */
ASSERT MENABLE RAMOE MODLOAD;
ASSERT MENABLE RAMOE;
/* make ram stop driving */
ASSERT MENABLE;
/* load new byte onto bus */
ASSERT MENABLE MODENABLE;
/* write pulse */
ASSERT MENABLE MODENABLE RAMOE RAMWE;
ASSERT MENABLE MODENABLE;
/* check to see if counter is full */
IF SYMBOLDONE CJMP DONEBOX;
/* increment counter */
ASSERT MENABLE INCREMENT;
ASSERT MENABLE;
JMP BOXLOOP;

DONEBOX:
ASSERT MENABLE;
JMP DOXHAIR;

DOXHAIR:
/* latch the bits from the detector */
ASSERT SYMBOL DETLOAD;
ASSERT CLEARCOUNT SYMBOL;
/* location of first pixel should now be stable output */
XHAIRLOOP:
/* make the ram drive the databus */
ASSERT SYMBOL;

DONEBRK:
ASSERT MENABLE SYMBOL;
ASSERT MENABLE SYMBOL;
ASSERT MENABLE RAMOE SYMBOL;
ASSERT MENABLE RAMOE SYMBOL;

/* ram is outputting original byte */
ASSERT MENABLE RAMOE MODLOAD SYMBOL;
ASSERT MENABLE RAMOE MODLOAD SYMBOL;
ASSERT MENABLE RAMOE SYMBOL;
ASSERT MENABLE RAMOE SYMBOL;
/* make ram stop driving */
ASSERT SYMBOL;
ASSERT SYMBOL;

/* load new byte onto bus */

ASSERT MENABLE MODENABLE SYMBOL;
ASSERT MENABLE MODENABLE SYMBOL;

/* write pulse */
ASSERT MENABLE MODENABLE RAMOE RAMWE SYMBOL;
ASSERT MENABLE MODENABLE RAMOE RAMWE SYMBOL;
ASSERT MENABLE MODENABLE SYMBOL;
ASSERT MENABLE MODENABLE SYMBOL;
/* check to see if counter is full */
IF SYMBOLDONE CJMP DONEXHAIR;
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/* increment counter */
ASSERT INCREMENT SYMBOL;
ASSERT SYMBOL;
JMP XHAIRLOOP;

DONEXHAIR:
ASSERT MENABLE SYMBOL;
ASSERT MENABLE SYMBOL;
ASSERT MENABLE SYMBOL;
ASSERT MENABLE SYMBOL;
ASSERT MENABLE SYMBOL;
ASSERT MENABLE SYMBOL;

JMP STARTCOPY;

STARTCOPY:
IF FS CJMP FSWAIT;
JMP STARTCOPY;

/* fs has gone low */

FSWAIT:IF FS CJMP FSWAIT;

/* falling edge of FS */
/* clear the counter, and begin enabling the output */
ASSERT CLEARCOUNT MENABLE COPY RAMOE;

MEMCOPY:
/* copy the location currently in counter */
ASSERT MENABLE COPY RAMOE VWRITE;
ASSERT MENABLE COPY RAMOE;
/* check to see if counter is full */
IF COUNTFULL CJMP DONECOPY;
/* increment counter */
ASSERT MENABLE COPY INCREMENT RAMOE;
ASSERT MENABLE COPY RAMOE;
JMP MEMCOPY;

DONECOPY:
JMP BEGIN;

Listing 31: MCU Assertion Logic (mcuassert1.vhd)
-- This is the first assertion PAL for the MCU

library ieee;
use ieee.std_logic_1164.all;
entity main1 is
  port (clk : in std_logic;
        MCU_ASSERT, VWRITE, RAMOE, RAMWE, CLEARCOUNT, INCREMENT, COPY, MENABLE, SENABLE  : in
std_logic;
vwriteout, ramoeout, ramweout, clearcountout, incrementout, copyout, menableout, senableout:
buffer std_logic);

ATTRIBUTE pin_numbers of main1 : ENTITY is
“MCU_ASSERT:13  “&
“VWRITE:2  RAMOE:3  RAMWE:4  CLEARCOUNT:5  INCREMENT:6  COPY:7  MENABLE:8  SENABLE:9  “&
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“vwriteout:23  ramoeout:22  ramweout:21  “&
“clearcountout:20  incrementout:19 copyout:18  menableout:17  senableout:16”;
end main1;
architecture archmain of main1 is
  begin
  ff: process (clk)
  begin
    if rising_edge(clk) then
if MCU_ASSERT = ‘1’ then
vwriteout <= NOT VWRITE;
ramoeout <= NOT RAMOE;
ramweout <= NOT RAMWE;
clearcountout <= CLEARCOUNT;
incrementout <= INCREMENT;
copyout <= COPY;
menableout <= MENABLE;
senableout <= SENABLE;
else
vwriteout <= vwriteout;
ramoeout <= ramoeout;
ramweout <= ramweout;
clearcountout <= clearcountout;
incrementout <= incrementout;
copyout <= copyout;
menableout <= menableout;
senableout <= senableout;
end if;
     end if;
  end process ff;
end architecture archmain;

Listing 32: MCU Assertion Logic (mcuassert2.vhd)
-- This is the second assertion pal for the MCU

library ieee;
use ieee.std_logic_1164.all;
entity main2 is
  port (clk : in std_logic;
        MCU_ASSERT, MODENABLE, MODLOAD, SYMBOL, DETLOAD, SLOAD : in std_logic;
modenableout, modloadout, symbolout, detloadout, sloadout : buffer std_logic);

ATTRIBUTE pin_numbers of main2 : ENTITY is
“MCU_ASSERT:13  “&
“MODENABLE:2  MODLOAD:3  SYMBOL:4  DETLOAD:5  SLOAD:6  “&
“modenableout:23  modloadout:22  symbolout:21  detloadout:20  sloadout:19”;
end main2;
architecture archmain of main2 is
  begin
  ff: process (clk)
  begin
    if rising_edge(clk) then
if MCU_ASSERT = ‘1’ then
modenableout <= MODENABLE;
modloadout <= MODLOAD;
symbolout <= SYMBOL;
detloadout <= DETLOAD;
sloadout <= SLOAD;
else
modenableout <= modenableout;
modloadout <= modloadout;
symbolout <= symbolout;
detloadout <= detloadout;
sloadout <= sloadout;
end if;
     end if;
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  end process ff;
end architecture archmain;
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