
Helium Breath: A Pitch Shifter

6.111 Lab 3

Andrew Lamb
TA Brain Perrin

4/9/2001

Abstract

A device that shifts the pitch of an input sound signal is presented in detail. The pitch shifter uses
a simple algorithm of stretching or squeezing a sample in time to perform the desired pitch shift.
The system’s Analog to Digital and Digital to Analog mechanisms are examined in detail. The
system also includes a Micro-Programmable Control Unit, whose instruction format and opera-
tion are explained. A Storage Unit for addressing the necessary buffers and an Accumulator for
mixing the original and shifted signals are also presented. A major problem in the Accumulator
that was encountered is described and a work around of the problem is presented. Finally, some
reflections on lessons learned are discussed.

Table of Contents

Abstract 1
Table of Contents 2
List of Tables 3
List of Figures 4
Introduction 5
Overview 5

Block diagram and input specification 5
A/D and D/A considerations 6
Digital portion of the pitch shifter 7

Timing Unit 8
Overview 8
System clock 9
Sample clock 9

Input (Analog to Digital conversion) 10
MCU 11

Overview 11
Instruction Format 11
Hardware implementation 11
Flow control 12
Assembly code 14

Storage Unit 16
Overview 16
Buffer addressing 16
Maximum buffer size 17
Implementation 17

Accumulator and Output (Digital to Analog conversion) 21
Overview 21
Original design 22
Implementation problems 24
Alternate design 24

Timing 25
External Synchronization 25
RAM timing 26

Debugging Strategy and Experience 27
MCU checkoff: make a detailed diagram 27
Accumulator: VHDL is not your friend 33

Conclusion 34

List of Tables

System Inputs 6

List of Figures

Shifting a sample’s pitch 5
Total system block diagram 6
System diagram without analog signals 7
Pitch shifter system block diagram 8
Timing unit block diagram 9
Relative size of the sample clock and system clock 9
Timing unit code (timingunit.vhd) 9
 A/D timing 10
MCU instruction format 11
MCU hardware implementation 12
Flow control diagram for pitch shifter 13
Specification file (mcu.sp) 14
Assembly file (mcu.as) 15
Block diagram of storage unit 16
Relation of increment signal to shift buffer address 17
Pitch Multiplier Counter (pitchmultipliercounter.vhd) 17
Sequencer (sequencer.vhd) 18
Storage Unit (storageunit.vhd) 20
Accumulator block diagram 21
Designed Accumulator 22
Accumulator VHDL(accumulator.vhd) 22
Implemented Accumulator 24
VHDL code for 22V10 accumulator flip flop(8bitreg.vhd) 25
External synchronization circuit 26
6264 RAM timing 26
MCU test specification file (mcutest.sp) 27
MCU test assembly code (mcutest.as) 28
MCU test assertion logic (mcutest.vhd) 32

akes
nalog
r

 aver-

layed
an it
 was
nd of

 twice.
g the

listed
Introduction

For the third laboratory experience in 6.111, a sound pitch shifter was built. The pitch shifter t
as an input an analog voltage representing a sound wave, and produces as an output an a
voltage representing a pitch shifted version of that sound. The shifted signal can have eithe
higher or lower pitch than the original signal. The output can be either one or an arithmetic
age of the original signal and the pitch shifted signal.

To produce the pitch shift, short samples of the input are recorded. The samples are then p
back either faster or slower than they were recorded. By playing the sample back slower th
was recorded, the perceived pitch is shifted down. By playing the sample back faster that it
recorded, the perceived pitch is shifted up. To stretch out the sample, the information at the e
the sample is discarded. To squish the sample, some of the sample’s information is played
Figure 1 illustrates how a particular sample’s pitch can be modified by stretching or squishin
original waveform.

Figure 1: Shifting a sample’s pitch

Overview

Block diagram and input specification
A block diagram for the entire system is given in Figure 2. The user interface and inputs are
in Table 1.

Source: 6.111 lab3 handout
Lamb 5 6.111 Lab 3

be
igital

ta-
 at
igital

bit
n of

rig-

.

.

le
Figure 2: Total system block diagram

A/D and D/A considerations
By removing the analog signals from the block diagram, the design of the pitch shifter can
done exclusively in the digital domain. The separation of the analog components from the d
components is shown in Figure 3.

The A/D is an Analog to Digital converter. The A/D is a single chip which converts an instan
neous analog voltage on its input line into an 8 bit digital value on its output lines. The time
which the A/D samples the input voltage is determined by control signals generated by the d
pitch shifter.

The D/A block is a Digital to Analog converter. The D/A is a single chip which converts a 8
digital value on its input lines into an analog voltage on its output lines. In this implementatio

Table 1: System Inputs

Input name Signal Purpose

/RESET
(Button)

Resets the pitch shifter such that the shifted signal is the same as the o
inal signal.

PITCHUP
(Button)

Increases the pitch of the shifted signal once per press.

PITCHDOWN
(Button)

Decreases the pitch of the shifted signal once per press.

SHIFT?
(Switch)

If the SHIFT? switch is on, the output contains the pitch shifted signal

PASSORIG?
(Switch)

If the PASSORIG? signal is on, the output contains the original signal
(Note: if both SHIFT? and PASSORIG? are on, then the output is the
average of the shifted signal and the input signal.)

Buffer Size
(4 switches)

Selects the number of samples that are used for each particular samp
frame that is to be stretched or squished.

Sample Frequency
(Switch)

If off, the pitch shifter samples the input at 9600 Hz. If on, the pitch
shifter samples the input at 19200 Hz.

Source: 6.111 lab3 handout

ANALOG
IN

ANALOG
OUT

/RESET
PITCHUP

PITCHDOWN
SHIFT?

PASSORIG?

Sampling Freq. Select

Buffer Size Select4

Pitch
Shifter
Lamb 6 6.111 Lab 3

The
the
The
The
stem

ck
es the

ry
am-

 the

e
two
the pitch shifter, the D/A is a part of the Accumulator, and hence the digital part of the pitch
shifter only deals with the D/A indirectly through the Accumulator interface.

Figure 3: System diagram without analog signals

Digital portion of the pitch shifter
Figure 4 illustrates the further decomposition of the pitch shifter into its component modules.
heart of the pitch shifter is a Micro-Programmed Control Unit (MCU). An MCU is similar to
CPU found in personal computers, except that the MCU is specialized to a particular task.
MCU has specialized output for controlling the A/D, the Storage Unit, and the Accumulator.
MCU is programmed using an assembly language created specifically for the pitch shifter sy
and that is described in detail below.

In addition, the pitch shifter also contains a Timing Unit which provides both the system clo
and the sample clock. The sample clock determines the rate at which the pitch shifter sampl
input signal. The frequency of the sample clock depends on the current setting of the
sample_frequency input switch.

The Storage Unit is responsible for maintaining two buffers using a Random Access Memo
(RAM). The sample buffer is filled with the current sample. The shift buffer contains the last s
ple recorded. By reading the shift buffer either more or less quickly than the sample buffer,
pitch of the stored sample can either be increased or decreased.

The Accumulator allows a mixture of the original and the shifted signal to be outputted at th
same time. The Accumulator can average its current value with a new value to easily mix the
signals together.

Source: 6.111 lab3 handout
Lamb 7 6.111 Lab 3

m

Figure 4: Pitch shifter system block diagram

Timing Unit

Overview
The Timing Unit uses a 1.8 MHz clock from a crystal oscillator to produce a 900 KHz syste
clock and either 19.2 KHz or 9.6 KHz sample clock. A block diagram of the Timing Unit is
shown in Figure 5.

D
A
T
A

B
U
S

Analog to
Digital

Converter
(A2D)

Storage
Unit

Accumulator

8

8

8

Micro-
Programmed

Control
Unit

(MCU)

User Input
Synch-

ronizer

output_originaloutput_shift

Timing
Unit

sample
clock

start
sample

drive
bus

load
accum

read
bus

write
bus

shift
buff

count
one

buff_size
pitch_up

pitch_down

4

sample
frequency
Lamb 8 6.111 Lab 3

The
bit of
4

med
nput,
nt to
mple
Figure 5: Timing unit block diagram

System clock
The system clock is created by dividing the crystal clock in half by using a 74LS393 counter.
crystal oscillator is fed into the clock input of the 74LS939 and the second least significant
the output is used as a system clock. The output of the 74LS393 is buffered using a 74LS0
inverter to avoid clock skew. Clock skew is a potential problem because the system clock is
widely distributed around the pitch shifter.

Sample clock
The sample clock is generated by using a 22V10 Programmable Array Logic (PAL) program
with the VHDL code shown in Figure 7. Depending on the value of the sample_frequency i
the 22V10 produces a sample clock of 9600 Hz or 19200 Hz clock on its output. It is importa
note that the sample clock is much longer than the system clock. The relative length of the sa
clock to the system clock is shown in Figure 6.

Figure 6: Relative size of the sample clock and system clock

Figure 7: Timing unit code (timingunit.vhd)
-- this is the timing usint which creates
-- a 9600 Hz signal on sampout if sampspeed is 0
-- or a 19.2 kHz signal if sampspeed is 1
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
entity timingunit is
 port (clk : in std_logic;
 sampspeed : in std_logic;
 sampout : out std_logic);
 attribute pin_numbers of timingunit:entity is
 “sampspeed:23 sampout:21”;
end timingunit;

Timing Unit

1.8 MHz
Crystal

Oscillator

Divide
by 2

(74LS393)

System Clock(clk)

"timing
unit"

(22V10)

sample_clock

sample_freq

(...)

(...)

System Clock
(clk)

Sample Clock
(sample_clk)
Lamb 9 6.111 Lab 3

te is
as
 After
utput
ycle

he
mped-
ives
architecture timingarch of timingunit is
 signal int_cnt : std_logic_vector(5 downto 0);
 signal int_samp : std_logic;

begin
 -- out counting process counts to 96 (110000) and then resets
 process(clk)
 begin -- process
 if rising_edge(clk) then
 if (int_cnt = “110000” and sampspeed = ‘1’) then
 int_cnt <= (others => ‘0’); -- reset timer if fast samp speed
 int_samp <= not int_samp; -- cause the timer to oscillate
 elsif (int_cnt = “011000” and sampspeed = ‘0’) then
 int_cnt <= (others => ‘0’); -- reset if slow samp speed
 int_samp <= not int_samp;
 else
 int_cnt <= int_cnt + 1;
 end if;
 end if;
 end process;

 sampout <= int_samp;

end architecture timingarch;

Input (Analog to Digital conversion)

The conversion of the input analog signal to a digital signal that the pitch shifter can manipula
done using the AD670 8-bit ADC made by Analog Devices Corporation. Once the AD670 h
been signaled to sample, it takes approximately 10 microseconds to perform a conversion.
10 microseconds, the data representing the sample from the AD670 can be written to the o
pins by sending the AD670 appropriate control signals. A timing diagram for the conversion c
used in the pitch shifter is shown in Figure 8.

Figure 8: A/D timing

The conversion cycle is started by pulsing both the R/n_W and the n_CE/n_CS lines low. T
conversion is finished a maximum of 10 microseconds later. The output pins are in a high i
ance state until the n_CE/n_CS line is brought low. A few nanoseconds later, the AD670 dr
the output pins with an 8 bit value representing the input voltage.

R/n_W

n_CE/ n_CS

data

(...)

(...)

(...)
data valid

(data in high impedance state)

conversion started read cycle started read cycle finished

(>=10 uS)
Lamb 10 6.111 Lab 3

he
gram-
6 bit

struc-
s is a
ata.
cer-
ays

nd

it of
tion.
tch
code
CU

ion. If
ress

utes

ep
ux is
cated

aded
MCU

Overview
The MCU controls the operation of the pitch shifter by asserting various control signals to t
other modules. The MCU is created from two 28F256A (8 bit address, 8 bit data word) Pro
mable Read Only Memories (PROMs). When composed together, the two PROMs create 1
instructions at each 8 bit address.

If the instruction at the current address asserts control signals, the MCU will execute the in
tion at the next address on the following clock cycle. If the instruction at the current addres
jump, the MCU executes the instruction at an address specified in the current instructions d
Jumps may be conditional (CJMP) or unconditional (JMP). Conditional jumps only occur if a
tain condition (such as the sample clock currently being high) is true. Unconditional jumps alw
force the MCU to jump to a new instruction because their condition (0b111) is wired high a
hence always true.

Instruction Format
Figure 9: MCU instruction format

Figure 9 shows the instruction format of each 16 bit MCU instruction. The most significant b
the instruction is the opcode. If the opcode is a 1, the instruction is called an ASSERT instruc
In each ASSERT instruction, the low 8 bits of the instruction control signals to rest of the pi
shifter. More than one control signal may be asserted in each ASSERT instruction. If the op
is a 0, the instruction called a CJMP instruction. When executing a CJMP instruction, the M
compares the value at the conditional address specified by bits 14 through 12 of the instruct
the condition value is high (logical true) the next instruction that the MCU executes is the add
specified in the lowest 8 bits of the instruction. If the conditional value is false, the MCU exec
the instruction at the next address.

Hardware implementation
The hardware to implement the MCU is shown in Figure 10. The two 74LS163 counters ke
track of the current instruction being executed. If the opcode is a 0b0, then the conditional m
enabled. The input that the conditional mux selects is specified by the conditional address, lo
in bits 14 through 12 in the instruction. If the condition selected is high, the 74LS163s are lo
with the value contained in the last 8 bits of the instruction.

MCU Instruction Format

0Conditional Jump (JMP) condition address

Bit positions 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0Unconditional Jump (JMP) address1 1 1

X X X

1Asserts D7 D6 D5 D4 D3 D2 D1 D0

ASSERT SIGNALS

D0 ACCUM_LOAD
D1 ACCUM_CLEAR
D2 A2D_STARTSAMPLE
D3 A2D_DRIVEBUS
D4 STORAGE_SHIFTBUFF
D5 STORAGE_WRITEBUS
D6 STORAGE_READBUS
D7 STORAGE_COUNT

X

X X X X

X X X XX X X

CONDITIONS

000 SAMPLE_CLOCK
001 OUTPUT_ORIGINAL
010 OUTPUT_SHIFT
111 TRUE
Lamb 11 6.111 Lab 3

h

ows
h

If the opcode is 1, then the last 8 bits in the instruction are interpreted by the rest of the pitc
shifter as control signals.

Figure 10: MCU hardware implementation

Flow control
Figure 11 shows a flow chart representing the MCU program in the pitch shifter. Figure 12 sh
the assembly specification file for the MCU, and Figure 13 shows the actual assembly whic
implements the pitch shifter.

PROM1
(high byte)

PROM0
(low byte)

’163 ’163

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0
1

2

S

sample_clock
output_original

output_shift

enable

3

7
Vcc

 n_load n_load

4 (high bits) 4 (low bits)

count_out count_out

address address

8

8 8

 countVcc

Note: n_load implies that load is negative true.
 Ie if n_load is low, then the ’163 loads,
otherwise it counts

 count rco rco

op_code

4 4

data_indata_in

To keep the diagram simple, the connections
from the low byte outputs of the prom
are not shown. The connections are listed
below.

D0 ACCUM_LOAD
D1 ACCUM_CLEAR
D2 A2D_STARTSAMPLE
D3 A2D_DRIVEBUS
D4 STORAGE_SHIFTBUFF
D5 STORAGE_WRITEBUS
D6 STORAGE_READBUS
D7 STORAGE_COUNT
Lamb 12 6.111 Lab 3

ck.
and

e A/
y the
Figure 11: Flow control diagram for pitch shifter

The MCU is in an infinite loop which begins by looking for the falling edge of the sample clo
When the falling edge of the sample clock occurs, the MCU signals the A/D to take a sample
the Storage Unit to increment the current count.

The A/D can’t be read from until it has finished converting the sample. Instead of querying th
D, the MCU assumes that the sample clock is so long compared to the A/D conversion time b
rising edge of the sample clock, the sample may be read with impunity.

falling
edge

of sample
clock?

Reset

No

Yes

Start A2D
conversion

Increment
storage count

rising edge
of sample

clock? No

Save A2D
data into

sample
buffer

output
original? No

Yes

Yes

Load
accumulator
with sample
buffer data

output
shifted? No

Yes

Load
accumulator

with shifted
buffer data
Lamb 13 6.111 Lab 3

, the
ce)
ite to

ple
oads

uffer,
The RAM used in the storage unit is sensitive to changes on its address lines. Even worse
address lines are controlled by a Cypress 374I CPLD (Complex Programmable Logic Devi
which has glitchy outputs. To avoid errors due to changing address lines during a read or wr
or from the RAM, the address count is incremented a long time before any RAM access is
attempted. The MCU then waits for the rising edge of the sample clock to proceed.

On the rising edge of the sample clock, the current value is read from the A/D into the sam
buffer of the RAM. If the user wishes the original signal to appear on the output, the MCU l
the accumulator with the newly written contents of the sample buffer. If the user wishes the
shifted signal to appear on the output, the MCU tells the Storage Unit to address the shift b
and the MCU loads the accumulator with the data from the shift buffer.

Assembly code
Figure 12: Specification file (mcu.sp)

/* mcu.sp */
/* Specification file (modified from original given) */
/* for Helium Breath */
/* created 3-7-98, modified 4-1-01 AAL */

/**/
/* Instruction Word Organization: */
/* conditional branches 0cccxxxx aaaaaaaa */
/* unconditional branches 0111xxxx aaaaaaaa */
/* assertion statements 1sssssss ssssssss */
/* where c = status selection */
/* a = alternative address, i.e. jump address */
/* s = assertion signals */
/**/

op <15:0>; /* Indicates the available bits */

address op <7:0>; /* Indicates bit locations for addresses */

value op <7:0>;

/*
 * Instruction set for your MCU
 */

CJMPop<15>=%b0;/* Conditional JuMP */
JMPop<15:12>=%b0111;/* unconditional JuMP */
ASSERTop<15>=%b1;/* unconditional ASSERT */

/* These are defined so that you may use them to make your code more
 * readable. Their use is not required, but it is helpful */

IF nop;
THEN nop;
TRUE op<14:12>=%b111; /* This forces a true output of the 151 */
RESETop<15:0>=%b0111000000000000;

/*
 * Assertions:
 */
ACCUM_LOAD op<0>=1; /* asserted all of _next_ clock cycle */
Lamb 14 6.111 Lab 3

ACCUM_CLEAR op<1>=1; /* asserted all of _next_ clock cycle */
A2D_STARTSAMPLE op<2>=1; /* asserted all of _next_ clock cycle */
A2D_DRIVEBUS op<3>=1; /* asserted all of _next_ clock cycle */
STORAGE_SHIFTBUFF op<4>=1; /* latched on the _next_ rising edge */
STORAGE_WRITEBUS op<5>=1; /* asserted all of _next_ clock cycle */
STORAGE_READBUS op<6>=1; /* asserted all of _next_ clock cycle */
STORAGE_COUNT op<7>=1; /* latched on the _next_ rising edge */

/*
 * Status signals:
 */

SAMPCLKop<14:12>=0;
OUTPUT_ORIGINAL op<14:12>=1;
OUTPUT_SHIFT op<14:12>=2;

Figure 13: Assembly file (mcu.as)
/* mcu.as */
/* created 3-1-98, modified 4-1-01 */

SPEC_FILE = mcu.sp;
LIST_FILE = mcu.lst;
MASK_COUNT = 8;
SET_ADDRESS = 0; /* start at addr 0 */
LOAD_ADDRESS = 000;

/* main control program */
BEGIN: IF SAMPCLK CJMP BEGIN; /* wait until sampclk falls low */

ASSERT A2D_STARTSAMPLE A2D_DRIVEBUS STORAGE_COUNT; /* start a sample cooking */
CLKWT: IF SAMPCLK CJMP DOCONV;
 JMP CLKWT; /* now wait until sample clock goes high */
DOCONV: ASSERT ACCUM_CLEAR; /* clear the accumulator */
 ASSERT A2D_DRIVEBUS; /* start the a2d outputting */
 ASSERT A2D_DRIVEBUS STORAGE_READBUS; /* save the a2d output to ram */
 IF OUTPUT_ORIGINAL CJMP OUTORIG; /* if we are supposed to be outputting the
original signal */
 JMP AORIG; /* jump to after orignal outputting */
OUTORIG: ASSERT STORAGE_WRITEBUS ACCUM_LOAD; /* data is valid last half of the clock
cycle */

ASSERT STORAGE_WRITEBUS ACCUM_LOAD; /* Load accumulator with sample buffer data
*/
AORIG: IF OUTPUT_SHIFT CJMP OUTSHFT; /* test to see if we are to load the shifted sig-
nal */
 JMP FINISH; /* nope, so we are done */
OUTSHFT: ASSERT STORAGE_SHIFTBUFF; /* get the RAM address stable */
 ASSERT STORAGE_SHIFTBUFF STORAGE_WRITEBUS ACCUM_LOAD; /* prep for writing to
accumulator */

ASSERT STORAGE_SHIFTBUFF STORAGE_WRITEBUS ACCUM_LOAD; /* load accumulator with
shifted sample */
FINISH: JMP BEGIN; /* all done, go back and do it again */
Lamb 15 6.111 Lab 3

d shift
nal is
ing
one

tions
.
ple

. The
are
reased,

ddress
he
shift
Storage Unit

Overview
The Storage Unit is responsible for generating the RAM addresses of the current sample an
buffers. The Storage Unit addresses the sample buffer by default, but when the shift_buff sig
asserted, the Storage Unit addresses the Shift Buffer. The MCU does not worry about keep
track of buffers, maximum buffer sizes, or swapping the buffers. All of the book keeping is d
internally by the Storage Unit. A block diagram of the Storage Unit is shown in Figure 14.

Figure 14: Block diagram of storage unit

Buffer addressing
The sample buffer and the shift buffer are each comprised of 2048 (11 bits of address) loca
with 8 bits of data each. A twelfth address bit is used to distinguish between the two buffers
Hence, a total of 4096 locations out of a possible 8192 in the RAM are used. When the sam
buffer is full, the roles of the two buffers are swapped by reversing the twelfth address bit.

The pitch multiplier counter’s 6 bit increment is used to increment the shift buffer’s address
increment is added to an internal 15 bit counter, and the top 11 bits of this internal counter
used as the shift buffer address. Pressing the shift_up button causes the increment to be inc
and pressing the shift_down button causes the increment to be decreased.

When the increment is 0b010000, the shift buffer address is the same as the sample buffer a
(except for the twelfth bit) and the shifted signal is the same as the sampled signal. When t
increment is greater than 0b010000, some shift buffer addresses are skipped. By skipping

pitch
multiplier

counter

increment(6)

sequencer

buff_size(4)

op_code
count

shift_buff
RAM address(12)

Reset

SRAM
(6264) CS2

n_WE

n_OE

n_CS1

STORAGE_READBUS

STORAGE_WRITEBUS

Vcc

clk

I/O data_bus(8)

Address
Lamb 16 6.111 Lab 3

is less
hed out
r

er than
l shift

r the
hows
ternal
r roles.
into a
buffer addresses, the signal is squished in time and the pitch is raised. When the increment
than 0b010000, some shift buffer addresses are repeated, causing the sample to be stretc
and lowering the pitch. Figure 15 shows the relation of the internal counter to the shift buffe
address.

Figure 15: Relation of increment signal to shift buffer address

Maximum buffer size
If the user wishes to use smaller buffers, the buff_size counter can be set to something oth
1111. When the top four sample buffer address bits are equal to the buffer size, the interna
and sample counters are reset to zero, and their roles are reversed.

Implementation
The VHDL code to implement the Storage Unit is shown below. Figure 16 shows the code fo
pitch multiplier counter module responsible for generating the increment signal. Figure 17 s
the code for the sequencer module which is responsible for storing and incrementing the in
shift and sample addresses, as well as detecting when the buffers are full and swapping thei
Figure 18 is the entity which combines both the pitch multiplier counter and the sequencer
CPLD and assigns pin numbers to the input and output signals.

Figure 16: Pitch Multiplier Counter (pitchmultipliercounter.vhd)
-- The pitch multiplier counter is responsible for
-- setting the size of the increment of the shifting
-- counter in the storage unit based on user input.
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
entity pitchmultipliercounter is
 port (
 clk : in std_logic;
 pitchup, pitchdown : in std_logic;
 reset : in std_logic;
 shiftincrement : out std_logic_vector(5 downto 0));
end pitchmultipliercounter;

-- internally, we first need to synchronize the inputs pitchup and pitch down
-- reset sets the counter to 01000000 because this will make the
-- shifting buffer count by one.
-- Getting a pitchup increments the counter by 2
-- Getting a pitchdown decrements the counter by 2

Shift buffer
address

current
shift

buffer

Low 11 bits of the shift buffer address

increment

internal count only
Lamb 17 6.111 Lab 3

-- perhaps in a later version, the counter will not overflow and reset
architecture timingarch of pitchmultipliercounter is
 signal int_count : std_logic_vector(5 downto 0);
 signal pu_d1, pu_d2, pu_sync : std_logic; -- signals for syncing pitch up
 signal pd_d1, pd_d2, pd_sync : std_logic; -- signals for syncing pitch down

begin

 process(clk)
 begin -- process
 if rising_edge(clk) then
 -- first do all of the synchronizing
 pu_d1 <= pitchup;
 pu_d2 <= pu_d1;
 pd_d1 <= pitchdown;
 pd_d2 <= pd_d1;

 -- now, increment or decrement
 if (reset = ‘1’) then
 int_count <= “010000”;
 elsif (pu_sync = ‘1’) then
 int_count <= int_count + 1;
 elsif (pd_sync = ‘1’) then
 int_count <= int_count - 1;
 else
 int_count <= int_count;
 end if;
 end if;
 end process;

 -- synchronization so a long level only gives a pulse
 pu_sync <= (pu_d1 and (not pu_d2));
 pd_sync <= (pd_d1 and (not pd_d2));

 -- pass out the internal counter with two zeros on it
 shiftincrement <= int_count;

end architecture timingarch;

Figure 17: Sequencer (sequencer.vhd)
-- this is the sequencer which contains all of the counters necessary to
-- address the RAM.
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
entity sequencer is
 port (
 clk : in std_logic;
 shiftbuff : in std_logic; -- 1 address shift buffer
 -- 0 address sample buffer
 buff_size : in std_logic_vector(3 downto 0); -- max buffer size
 op_code : in std_logic; -- enable when 1
 count : in std_logic; -- count by one (only when op_code = 1)
 reset : in std_logic;
 increment : in std_logic_vector(5 downto 0);
 ram_addr : out std_logic_vector(11 downto 0));
Lamb 18 6.111 Lab 3

end sequencer;

architecture timingarch of sequencer is
 signal sample_buffer : std_logic; -- the MSB of the sample buffer
 -- address
 signal samp_count : std_logic_vector(10 downto 0);
 signal shift_count : std_logic_vector(14 downto 0);
 signal shiftbuff_sync : std_logic; -- sync the shift buff from rom

begin
 process(clk)
 begin -- process
 if rising_edge(clk) then
 -- synchronize the shiftbuff signal
 shiftbuff_sync <= shiftbuff;

 -- if we are resetting, reset both counters to 0
 if (reset = ‘1’) then
 samp_count <= (others => ‘0’);
 shift_count <= (others => ‘0’);
 sample_buffer <= ‘0’;

 -- only do the rest if the MCU is asserting and count is asserted
 elsif (op_code = ‘1’) and (count = ‘1’) then

 -- if the sample buffer is full
 if samp_count = (buff_size & “1111111”) then
 -- swap the two buffers
 sample_buffer <= not sample_buffer;
 -- reset both counters
 samp_count <= (others => ‘0’);
 shift_count <= (others => ‘0’);
 else
 -- increment sample counter;
 samp_count <= samp_count + 1;
 sample_buffer <= sample_buffer;

 -- if the shift counter is at the max size, reset to zero
 if shift_count(14 downto 4) = (buff_size & “1111111”) then
 shift_count <= (others => ‘0’);
 else
 shift_count <= shift_count + (“00000” & increment);
 end if;
 end if;
 end if;
 end if;
 end process;

 -- the ram address’s high bit is the sample buffer when
 -- the shift buff is not asserted, and the high bit is not sample buffer
 -- when shift buff is asserted.
 --
 -- The bottom 11 address bits are the sample counter when swap buff is not
 -- asserted and they are the top 11 bits of the shift counter when shift buff
 -- is asserted.
 ram_addr <= (sample_buffer & samp_count)
 when (shiftbuff_sync = ‘0’) else
Lamb 19 6.111 Lab 3

 ((not sample_buffer) & shift_count(14 downto 4));

end architecture timingarch;

Figure 18: Storage Unit (storageunit.vhd)
-- This is the storage unit. It is used to address
-- a 12 bit RAM which is divided into 2 buffers, the sample
-- buffer and the shifting buffer.
library ieee;
use ieee.std_logic_1164.all;
use work.pitchmultipliercounter;
use work.sequencer;
entity storageunit is
 port (
 clk : in std_logic;
 pitch_up, pitch_down : in std_logic;
 reset : in std_logic;
 buff_size : in std_logic_vector(3 downto 0);
 op_code : in std_logic;
 count_enable : in std_logic;
 shift_buff : in std_logic;
 ram_addr : out std_logic_vector(11 downto 0));

 ATTRIBUTE pin_avoid of storageunit:entity is
-- these are all assuming the K1 kit connector is connected properly
-- “ 1 2 11 21 22 32 42 43 44 53 63 64 74 83”& -- Vdd, Gnd, VPP

 “ 12 19 73 “& -- These pins are the interconnect bus
 -- for CPLD 2, 3, and 4. They are Serial I/O
 -- pins for CPLD 1.

 “ 13 “& -- This is I0-9. Can screw up the clock of C1. Be
 -- careful when using this.
 “ 23 62 65 “&

 “ 14 35 41 51 72 “ & -- Used by Programmer. No external connection.
 “ 71 “ & -- gnd
 “ 12 19 73 “ & -- cpld interconnect bus
 “ 24 25 26 27 28 29 30 31 55 56 57 58 59 60 61 66 “ & -- other cpld input/output
 “ 3 4 5 6 8 9 15 16 17 18 67 68 69 71 “ & -- rest of the L1 (and ground)
 “ 79 80 81 82”; -- rest of L2-0 through L2-7
 attribute pin_numbers of storageunit:entity is
 “pitch_up:52 pitch_down:50 reset:54 “ &
 “buff_size(0):75 buff_size(1):76 buff_size(2):77 buff_size(3):78 “ &
 “op_code:70 “ & -- op code is on L1-0
 “count_enable:10 “ & -- count is on L1-7
 “shift_buff:7 “ & -- shift_buff is on L1-4
 “ram_addr(0):33 ram_addr(1):34 ram_addr(2):36 ram_addr(3):37 “ &
 “ram_addr(4):38 ram_addr(5):39 ram_addr(6):40 ram_addr(7):45 “ &
 “ram_addr(8):46 ram_addr(9):47 ram_addr(10):48 ram_addr(11):49”;-- ram
 -- addresses
 -- are on A8-A19

end storageunit;
Lamb 20 6.111 Lab 3

r is
he
-
umu-
architecture timingarch of storageunit is
 signal int_increment : std_logic_vector(5 downto 0);
begin
 PMC : pitchmultipliercounter
 port map (
 clk => clk,
 pitchup => pitch_up,
 pitchdown => pitch_down,
 reset => reset,
 shiftincrement => int_increment);
 SEQ : sequencer
 port map (
 clk => clk,
 shiftbuff => shift_buff,
 buff_size => buff_size,
 op_code => op_code,
 count => count_enable,
 reset => reset,
 increment => int_increment,
 ram_addr => ram_addr);

end architecture timingarch;

Accumulator and Output (Digital to Analog conversion)

Overview
The Accumulator was the most difficult part of the pitch shifter to implement. The Accumulato
necessary to allow a mixture of both the original and the shifted signals to be outputted at t
same time. The original design of the pitch shifter is shown in the left of Figure 19. As imple
mented, the original design could not be made to work. The right of Figure 19 shows the acc
lator that was actually built and demonstrated.

Figure 19: Accumulator block diagram

accumulator

load1

load2

data_bus(8)

data_out(8)

D/A
(AD558)

analog_out

accumulator

load

clear

data_out(8)

D/A
(AD558)

analog_out

data_bus(8)

DESIGNED BUILT
Lamb 21 6.111 Lab 3

tput
imple-
ure
Original design
The original Accumulator design called for two independently loadable registers, whose ou
was averaged and sent to the D/A converter as shown in Figure 20. The original design was
mented in VHDL and synthesized on a Cypress 374I CPLD. The VHDL code is shown in Fig
21.

Figure 20: Designed Accumulator

Figure 21: Accumulator VHDL(accumulator.vhd)
-- This is the accumulator code for the
-- Helium Breath Lab3. The output is the
-- arithmetic average of two values
-- each of which is stored by asserting the
-- load1 or the load2 signals.
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity accumulator is
 port (
 clk : in std_logic;
 op_code : in std_logic;
 load : in std_logic;
 clear : in std_logic;
 data_bus : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(7 downto 0));

 ATTRIBUTE pin_avoid of accumulator:entity is

D Flip Flop

8

D Flip Flop

8

8

data_bus

8 8

data1 data2

load load load2load1

+
9

D/A
(AD558)

analog_out

8 high bits

LSB

8

Lamb 22 6.111 Lab 3

-- these are all assuming the K1 kit connector is connected properly
-- “ 1 2 11 21 22 32 42 43 44 53 63 64 74 83”& -- Vdd, Gnd, VPP

 “ 12 19 73 “& -- These pins are the interconnect bus
 -- for CPLD 2, 3, and 4. They are Serial I/O
 -- pins for CPLD 1.

 “ 13 “& -- This is I0-9. Can screw up the clock of C1. Be
 -- careful when using this.
 “ 23 62 65 “&

 “ 14 35 41 51 72 “ & -- Used by Programmer. No external connection.
 “ 71 “ & -- gnd
 “ 12 19 73 “ & -- cpld interconnect bus
 “ 5 6 7 8 9 10 15 16 17 18 67 68 69 71 “ & -- rest of the MCU data (L1-0
 -- through L1-15)
 “ 33 34 36 37 38 39 40 45 46 47 48 49 50 52 54 “ & -- data to/from other cpld
 “ 75 76 77 78 79 80 81 82”; -- L2-0 through L2-7
 attribute pin_numbers of accumulator:entity is
 “load:3 clear:4 op_code:70 “ &
 “data_out(0):24 data_out(1):25 data_out(2):26 data_out(3):27 “ &
 “data_out(4):28 data_out(5):29 data_out(6):30 data_out(7):31 “ &
 “data_bus(0):55 data_bus(1):56 data_bus(2):57 data_bus(3):58 “ &
 “data_bus(4):59 data_bus(5):60 data_bus(6):61 data_bus(7):66”;
end accumulator;

architecture timingarch of accumulator is
 -- result of adding the two data registers
 signal internal_sum : std_logic_vector(8 downto 0);

begin
 -- the outputs are combinational
 -- data out is the internal sum divided by 2
 data_out <= internal_sum(8 downto 1); -- chop off the lsb to divide by two

 process(clk, op_code, load, clear, data_bus)
 begin -- process
 if rising_edge(clk) then
 if (op_code = ‘1’) and (clear = ‘1’) then
 -- reset the counter
 internal_sum <= (others => ‘0’);
 elsif (op_code = ‘1’) and (load = ‘1’) then
 -- increment with data
 internal_sum <= internal_sum + data_bus;
 else
 -- keep the same
 internal_sum <= internal_sum;
 end if;
 end if;
 end process;

end architecture timingarch;
Lamb 23 6.111 Lab 3

ver
een
 confu-

roach
e alter-
rrent

t sig-
wever,
wn in
Implementation problems
Despite a large amount of time spent trying to get the Accumulator to work, its behavior ne
matched the specification given in by the VHDL code. The reason for the discrepancy betw
description and operation was never ascertained. The discrepancy was the source of much
sion and anguish in the debugging process.

Alternate design
When it became clear that the original design could not be made to work, an alternate app
was undertaken. The alternate approach approximates the original accumulator design. Th
nate Accumulator only has a single load signal which averages the current output with the cu
input to yield the new output. The output of the original design does not depend not on pas
nals as does the output of the alternate design, therefore the original design was a better. Ho
the approximate design could be implemented. The implemented Accumulator design is sho
Figure 22, and the VHDL code for the 22V10 8 bit register is shown in Figure 23.

Figure 22: Implemented Accumulator

LS283 LS283
 rco rci rco rci

8

4 (low) 4 (high)

data_bus

sumout

sumout

clear_sync

8

D flip flop
(22V10)

3 (high) 4

gnd

(lsb)

D

Q

8

 clear

 loadload_sync

a

a

b

b

4 (low) 4 (high)

D/A
(AD558)

analog_out
Lamb 24 6.111 Lab 3

ere
e 24
for the
Figure 23: VHDL code for 22V10 accumulator flip flop(8bitreg.vhd)
-- an 8 bit loadable, clearable register for a
-- 22V10. A 22V10 was used to make the wiring easier.
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity reg8 is
 port (
 clk : in std_logic;
 clear : in std_logic;
 load : in std_logic;
 data_in : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(7 downto 0));

 attribute pin_numbers of reg8:entity is
 “clk:1 “ &
 “clear:2 “ &
 “load:3 “ &
 “data_in(0):4 data_in(1):5 data_in(2):6 data_in(3):7 “ &
 “data_in(4):8 data_in(5):9 data_in(6):10 data_in(7):11 “ &
 “data_out(0):23 data_out(1):22 data_out(2):21 data_out(3):20 “ &
 “data_out(4):19 data_out(5):18 data_out(6):17 data_out(7):16”;

end reg8;

architecture timingarch of reg8 is
 signal int_data : std_logic_vector(7 downto 0);
begin
 process (clk, clear)
 begin -- process lk
 if rising_edge(clk) then
 if clear = ‘1’ then
 int_data <= (others => ‘0’);
 elsif load = ‘1’ then
 int_data <= data_in;
 else
 int_data <= int_data;
 end if;
 end if;

 end process;
 data_out <= int_data;

end architecture timingarch;

Timing

External Synchronization
The external control signals from the MCU to the RAM, to the Accumulator, and to the A/D w
synchronized using the scheme shown in Figure 24. The assertion logic presented in Figur
does not assert the output signals if the opcode is 0 (jumps) and it holds the asserted signal
whole of the following clock cycle
Lamb 25 6.111 Lab 3

m the
avoid
f the
sing
next

 to a
signals.
p is
Figure 24: External synchronization circuit

The extra synchronization circuitry was necessary for two reasons. First, both the output fro
program counters (74LS163, see Figure 10) and the output from the PROMs is glitchy. To
problems with glitches on the control signals, the PROMs are only enabled for the last half o
clock cycle. The rest of the pitch shifter only looks at the values of the control lines at the ri
edge of the next clock cycle, so the synchronization circuitry holds the asserted signal for the
clock cycle.

The second reason that the circuitry in Figure 24 is necessary is that if the MCU is jumping
new address, the address is contained in the same bits of the 16 bit instruction as the assert
The synchronization circuit forces the output signals to 0 if the opcode indicates that a jum
occurring (opcode = 0) by tieing the n_reset pit to the opcode.

RAM timing
Figure 25: 6264 RAM timing

External synchronizing using a 74LS74
dual flip flop and opcode.

74LS74n_clr1

d1

clk1

pre1

q1

n_q1

gnd

d2

clk2

pre2

q2

n_q2

Vcc

n_clr2

op_code

signal to
latch

clk
Vcc

Take signal from
here. The choice to
use q or n_q depends on if
the input is positive
or nagative true.

XX

clk = n_CS2

sample clk

STORAGE_count

address

RAM Address changing
(enables output if RAM is
selected)

(...)

(...)

(...)

(...)
Lamb 26 6.111 Lab 3

e
f the
d for
serv-
was

 have
was
ested
ource

blink
rking
the
ram,
y the

U
mple-

.

Although the 6264 RAM is advertised as a static RAM, if the address lines change while th
RAM is active (CS1 high and n_CS2 low), the I/O pins suddenly drive the bus regardless o
state of the output enable (n_WE) signal. Originally unaware of this subtly, the design calle
the RAM to always be enabled by wiring the CS1 pin high and the N_CS2 pin low. After ob
ing unaccounted behavior from the RAM and re-reading the lab 2 handout, the n_CS2 pin
wired to the clock. The RAM therefore was active only for the last half of each clock cycle.
Enabling the RAM on the last half of the clock cycle gave the address lines time to stabilize
before enabling the RAM. Figure 25 shows the eventual RAM timing that was used.

Debugging Strategy and Experience

Implementing lab 3 involved two painful but separate experiences. Both experiences could
been significantly more painful had the design been more complex. In addition, debugging
aided by implementing the pitch shifter one module at a time. Each module was thoroughly t
before the next module was implemented. By building one module at a time, the possible s
of errors were kept to a minimum.

MCU checkoff: make a detailed diagram
Provided with lab 3 was a simple MCU program and assertion logic which caused lights to
in a particular order. This program was supplied to give an indication that the MCU was wo
properly before the other modules of the pitch shifter were implemented. Figure 26 shows
specification file for this test program. Figure 27 shows the assembly code for the test prog
and Figure 28 shows the VHDL code for the assertion logic. All three files were provided b
6.111 staff.

The MCU was built without the aid of detailed wiring diagrams with pin number. While the MC
eventually worked, several wiring mistakes were made that were hard to track down. When i
menting the rest of the system, detailed diagrams were madebefore wiring. Because of these wir-
ing diagrams (attached), very few wiring mistakes were made in the rest of the pitch shifter

Figure 26: MCU test specification file (mcutest.sp)
/* mcutest.sp */
/* assembler spec for debugging and testing of 163-based MCU */
/* created 2-26-98 */
/* (adapted from mcu.sp for AM29C10A-based MCU) */

/**/
/* Instruction Word Organization: */
/* conditional branches 0cccxxxx aaaaaaaa */
/* unconditional branches 0111xxxx aaaaaaaa */
/* assertion statements 1sssssss ssssssss */
/* where c = status selection */
/* a = alternative address, i.e. jump address */
/* s = assertion signals */
/**/

op <15:0>; /* Indicates the available bits */
address op <7:0>; /* Indicates bit locations for addresses */
value op <7:0>;
Lamb 27 6.111 Lab 3

/*
 * There is nothing magic about upper case.
 * You may change things to lower case as you wish.
 * Remember, the assembler maps all characters to lower case anyway!
 */

/*
 * Instruction set for your MCU
 */

CJMPop<15>=%b0;/* Conditional JuMP */

JMPop<15:12>=%b0111;/* unconditional JuMP */

ASSERTop<15>=%b1;/* unconditional ASSERT */

/* These are defined so that you may use them to make your code more
 * readable. Their use is not required. */

IF nop;
THEN nop;
TRUE op<14:12>=%b111; /* This causes the 151 to output true */
RESETop<15:0>=%b0111000000000000;

/* Assertions */

CLRLEDSop<1>=1;
LED0op<4>=1;
LED1op<5>=1;
LED2op<6>=1;
LED3op<7>=1;
LED4op<8>=1;
LED5op<9>=1;
LED6op<10>=1;
LED7op<11>=1;

/*
 * Status signals: Switches and frequency divider output OSC
 * Make sure that all status signals that change during mcu operation
 * are synchronized to the system /CLK
 */

S0 op<14:12>=0;
S1 op<14:12>=1;
S2 op<14:12>=2;
S3 op<14:12>=3;
S4 op<14:12>=4;
S5 op<14:12>=5;
OSC op<14:12>=6;

Figure 27: MCU test assembly code (mcutest.as)
/* mcutest.as */
/* assembler code for debugging and testing of 163-based MCU */
/* created 2-26-98 */
/* (inspired by mcu.as for AM29C10A-based MCU) */
Lamb 28 6.111 Lab 3

SPEC_FILE = mcutest.sp; /* This statement is required at the
 beginning of the ASSEM_FILE. It tells
 where the SPEC_FILE can be found. */

LIST_FILE = mcutest.lst; /* This statement specifies the name for
 the assembler listing file. If not
 included, no listing will be created */

MASK_COUNT = 8; /* This statement is required to mask out 8
 bits of the 16 bit op-code to produce 2 PROM
 files. Use with the ‘assem16to8’ command. */

SET_ADDRESS = 0; /* This statement tells the program at what
 address to start assembling. The address
 given is a hexadecimal number. */

LOAD_ADDRESS = 100; /* This statement, if used AFTER the
 SET_ADDRESS statement, determines the
 beginning PROM address for the program
 image. The address is in HEX. */

/* To execute this code, you should use the PAL file mcutest.pal.
Beware! The code has been placed in memory starting at HEX 100 so
you can use the same EPROMs for the debugging code as well as your
regular code. Wire address bit A8 of your EPROMs to +5 (or connect it
to one of your switches) to execute this code. Check the pal file,
mcutest.pal, and the specification file, mcutest.sp, to determine
wiring from the EPROMs to the PAL.

The OSC input to the multiplexer is reference frequency which tells
the LEDs how fast to blink. Any frequency within the range of about
10 to 20 Hz should work well. You should generate this frequency by
completing the mcutest.vhd file to create a counter which divides your
sampling clock by some appropriate amount. Then toggling the sampling
frequency selector switch will change the blink rate of the lights.

If nothing works, hook up your logic analyzer and follow the addresses
being executed. Use the mcu.lst file to follow the flow of
instructions and to see exactly what should be on the prom outputs and
the sequencer inputs. Check to see that the 163s are getting the
correct opcode at their LD inputs. If the opcode is a JMP, are the
163s getting the correct branch address at their ABCD inputs? Do they
load that address on the next rising edge? */

/* Begin debugging code */

START: ASSERT CLRLEDS; /* Test to see if program counter increments*/
 ASSERT; /* If PC does not increment, test to see */
 JMP LOC4; /* that EnT and EnP of the 163s are wired high */
FAIL1: RESET; /* If code reaches here, then test your */

/* The following lines of code attempt to check each bit of the branch
address individually. As each bit is checked, we turn on the
corresponding LED. We try to branch to addresses 4, 8, 16, 32, 64,
and 128. Address 67 takes care of bits 0 and 1. The code at PROC1
doesn’t get executed until after all these tests pass. */

LOC4:ASSERT LED2;
Lamb 29 6.111 Lab 3

JMP LOC8;
RESET;
ASSERT;
LOC8:ASSERT LED3;
JMP LOC16;
RESET;
RESET;RESET;RESET;RESET;
RESET;
LOC16:ASSERT LED4;
JMP LOC32;
RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;
LOC32:ASSERT LED5;
JMP LOC64;
RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;
LOC64:ASSERT LED6;
JMP LOC67;
RESET;
LOC67:ASSERT LED0 LED1;
JMP LOC128;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;RESET;
RESET;RESET;RESET;
LOC128:ASSERT LED7;

/* The fun stuff begins here. */

/* When we get to this point for the first time after a reset, and all
switches are off, all 8 LEDs should be lighted. If not, we shouldn’t
have gotten to this point anyway. But the problem probably lies in
the branch address wires from the EPROMs to the 163s. */

/* We wait here for a switch. */

BEGIN:CJMP S5 PROC2;/* If Switch 5 = 0 then execute PROC 1 */
JMP PROC1;/* Otherwise execute PROC 2 */
Lamb 30 6.111 Lab 3

/* Proc two causes the LEDs to display a “roving eye”. Switch 1
controls the right-moving half of the eye and switch 0 controls the
left-moving half. Switch 4 controls the speed. */

PROC2:CJMP S1 RIGHT;
JMP TESTLEFT;

/* A right-moving roving eye */

RIGHT:ASSERT CLRLEDS LED7;
WAIT7A:CJMP OSC WAIT7B;
JMP WAIT7A;
WAIT7B:CJMP OSC WAIT7B;

DO6R:ASSERT CLRLEDS LED6;
WAIT6A:CJMP OSC WAIT6B;
JMP WAIT6A;
WAIT6B:CJMP OSC WAIT6B;

DO5R:ASSERT CLRLEDS LED5;
WAIT5A:CJMP OSC WAIT5B;
JMP WAIT5A;
WAIT5B:CJMP OSC WAIT5B;

DO4R:ASSERT CLRLEDS LED4;
WAIT4A:CJMP OSC WAIT4B;
JMP WAIT4A;
WAIT4B:CJMP OSC WAIT4B;

DO3R:ASSERT CLRLEDS LED3;
WAIT3A:CJMP OSC WAIT3B;
JMP WAIT3A;
WAIT3B:CJMP OSC WAIT3B;

DO2R:ASSERT CLRLEDS LED2;
WAIT2A:CJMP OSC WAIT2B;
JMP WAIT2A;
WAIT2B:CJMP OSC WAIT2B;

DO1R:ASSERT CLRLEDS LED1;
WAIT1A:CJMP OSC WAIT1B;
JMP WAIT1A;
WAIT1B:CJMP OSC WAIT1B;

TESTLEFT: CJMP S0 LEFT;
JMP RETURN2;

/* A left-moving roving eye */

LEFT:ASSERT CLRLEDS LED0;
WAIT0C:CJMP OSC WAIT0D;
JMP WAIT0C;
WAIT0D:CJMP OSC WAIT0D;

DO1L:ASSERT CLRLEDS LED1;
WAIT1C:CJMP OSC WAIT1D;
JMP WAIT1C;
WAIT1D:CJMP OSC WAIT1D;
Lamb 31 6.111 Lab 3

DO2L:ASSERT CLRLEDS LED2;
WAIT2C:CJMP OSC WAIT2D;
JMP WAIT2C;
WAIT2D:CJMP OSC WAIT2D;

DO3L:ASSERT CLRLEDS LED3;
WAIT3C:CJMP OSC WAIT3D;
JMP WAIT3C;
WAIT3D:CJMP OSC WAIT3D;

DO4L:ASSERT CLRLEDS LED4;
WAIT4C:CJMP OSC WAIT4D;
JMP WAIT4C;
WAIT4D:CJMP OSC WAIT4D;

DO5L:ASSERT CLRLEDS LED5;
WAIT5C:CJMP OSC WAIT5D;
JMP WAIT5C;
WAIT5D:CJMP OSC WAIT5D;

DO6L:ASSERT CLRLEDS LED6;
WAIT6C:CJMP OSC WAIT6D;
JMP WAIT6C;
WAIT6D:CJMP OSC WAIT6D;

RETURN2: ASSERT CLRLEDS;
JMP BEGIN;

/* Proc 1 allows you to turn on and off leds 0 through 4 using the
corresponding switches */

PROC1:CJMP S0 LIGHT0; /* This checks LEDs 0 -> 4. Each LED can */
JMP CHECKS1;/* be turned on or off independently */
LIGHT0: ASSERT CLRLEDS LED0;

CHECKS1:CJMP S1 LIGHT1;
JMP CHECKS2;
LIGHT1: ASSERT CLRLEDS LED1;

CHECKS2:CJMP S2 LIGHT2;
JMP CHECKS3;
LIGHT2: ASSERT CLRLEDS LED2;

CHECKS3:CJMP S3 LIGHT3;
JMP CHECKS4;
LIGHT3: ASSERT CLRLEDS LED3;

CHECKS4:CJMP S4 LIGHT4;
JMP RETURN1;
LIGHT4: ASSERT CLRLEDS LED4;

RETURN1: JMP BEGIN;

Figure 28: MCU test assertion logic (mcutest.vhd)
--
-- mcutest.vhd --
Lamb 32 6.111 Lab 3

e
t the
s and a
 The

till
was
-- VHDL code for debugging and testing of 163-based MCU --
-- and getting your feet wet with a CPLD and the programmer --
-- created 3-7-98 --

-- We have provided you with the headers and entity --
-- declaration for a counter. You should design this counter --
-- to take as input your sampling frequency signal and produce --
-- a signal in the range 10-20 Hz on the osc output. The --
-- osc signal is a conditon input to your MCU which controls --
-- the blink rate of the LEDs in the MCU checkoff. --
-- This is intended to be a fairly simple exercise in VHDL --
-- and should only require a few lines of code. Talk to a --
-- TA or a friend if you don’t see how to do it. --

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
entity mcutest is
 port (sampclk : in std_logic; --This is the sampling clock
 osc : out std_logic); --This is a 10-20 Hz signal
 --which you should produce
 attribute pin_numbers of mcutest:entity is
 “osc:22”;
end mcutest;

architecture archmcutest of mcutest is
 signal int_cnt : std_logic_vector(8 downto 0);
 signal int_osc : std_logic;
begin
 process(sampclk)
 begin -- process
 if rising_edge(sampclk) then
 int_cnt <= int_cnt + 1;
 if int_cnt = “000000000” then
 -- flip the values of internal oscillator when
 -- we have counted all the way around
 int_osc <= not int_osc;
 end if;
 end if;
 end process;

 -- change osc when the output is all ones
 osc <= int_osc;

end architecture archmcutest; --”architecture” is optional; for clarity

Accumulator: VHDL is not your friend
The VHDL code provided for the original Accumulator design is very simple and should hav
worked. Instead, it cost a day of debugging time to realize that it did not. It is suspected tha
problem arose because the Accumulator and Storage Unit were placed on separate CPLD
signal conflict occurred. The suspicion has not been verified, and is suspect itself because
Storage Unit worked correctly. After checking all of the other modules comprising the pitch
shifter, the Accumulator VHDL code was compiled with different options. The Accumulator s
did not work as intended, but it behaved differently, leading to the conclusion that something
Lamb 33 6.111 Lab 3

ter
al)
s are
debug-

iginal
aining
spent
e.
ffort
 how-
 Accu-
wrong in the process between the VHDL implementation and hardware implementation. Af
trying to make the CPLD do what was intended for half a day, the alternate (and less optim
approach was adopted. The lesson learned from this debacle was that misbehaving CPLD
very hard to debug because the internal signals are not visible, and hence can not help with
ging.

Conclusion

The pitch shifter is a very complex device. Even though thoughtful care was taken in the or
design, problems inevitably arose. By keeping the device as simple as possible and still ret
the desired functionality, time was saved in the debugging process. The majority of the time
implementing the pitch shifter was in the debugging process, an all too common occurrenc
Detailed wiring diagrams cut down the debugging time as did careful wiring. It took a major e
to determine that the Accumulator was malfunctioning. Once the malfunction was isolated,
ever, only a few hours were necessary to create an alternate design and produce a working
mulator. Overall, simplicity and a good debugging strategy are essential to the design and
implementation of a complex system.
Lamb 34 6.111 Lab 3

	Helium Breath: A Pitch Shifter
	6.111 Lab 3
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Figure 1: Shifting a sample’s pitch

	Overview
	Block diagram and input specification
	Figure 2: Total system block diagram
	Table 1: System Inputs

	A/D and D/A considerations
	Figure 3: System diagram without analog signals

	Digital portion of the pitch shifter
	Figure 4: Pitch shifter system block diagram

	Timing Unit
	Overview
	Figure 5: Timing unit block diagram

	System clock
	Sample clock
	Figure 6: Relative size of the sample clock and system clock
	Figure 7: Timing unit code (timingunit.vhd)

	Input (Analog to Digital conversion)
	Figure 8: A/D timing

	MCU
	Overview
	Instruction Format
	Figure 9: MCU instruction format

	Hardware implementation
	Figure 10: MCU hardware implementation

	Flow control
	Figure 11: Flow control diagram for pitch shifter

	Assembly code
	Figure 12: Specification file (mcu.sp)
	Figure 13: Assembly file (mcu.as)

	Storage Unit
	Overview
	Figure 14: Block diagram of storage unit

	Buffer addressing
	Figure 15: Relation of increment signal to shift buffer address

	Maximum buffer size
	Implementation
	Figure 16: Pitch Multiplier Counter (pitchmultipliercounter.vhd)
	Figure 17: Sequencer (sequencer.vhd)
	Figure 18: Storage Unit (storageunit.vhd)

	Accumulator and Output (Digital to Analog conversion)
	Overview
	Figure 19: Accumulator block diagram

	Original design
	Figure 20: Designed Accumulator
	Figure 21: Accumulator VHDL(accumulator.vhd)

	Implementation problems
	Alternate design
	Figure 22: Implemented Accumulator
	Figure 23: VHDL code for 22V10 accumulator flip flop(8bitreg.vhd)

	Timing
	External Synchronization
	Figure 24: External synchronization circuit

	RAM timing
	Figure 25: 6264 RAM timing

	Debugging Strategy and Experience
	MCU checkoff: make a detailed diagram
	Figure 26: MCU test specification file (mcutest.sp)
	Figure 27: MCU test assembly code (mcutest.as)
	Figure 28: MCU test assertion logic (mcutest.vhd)

	Accumulator: VHDL is not your friend

	Conclusion

