
Interactive Toy Routing: The CyberBeanie Packet
Forwarding Protocol.

Andrew Lamb
6.033 Design Project One

3/22/2001
Saltzer/Clarke TH2

Abstract

A protocol is described for routing information across a wireless ad-hoc network of interactive
toys. The design presented considers both the severe constraints of the toys’ hardware, and the
requirements of the intended application. Each CyberBeanie toy only stores a single route through
the network in its RAM. The actual messages flowing through the network contain routing
instructions as part of their data. Intermediary CyberBeanies determine how to forward packets
based on the routing information they contain. Interesting routes are inferred from observing
broadcast messages. Each broadcast message contains a route from its source to its current loca-
tion. Performance is improved by limiting the propagation of broadcast messages. Based on pre-
liminary calculations, the CyberBeanie packet forwarding protocol supports its intended
application well, providing a high degree of interactivity.

that
flect
light

ch
can
 spec-
ed by

ie
ings
hin
s to
 if
uipped

dents.
rio of
ors,

s pre-
ts, and
ction.
onclu-

er-
yber-
f the
s a his-
work
t its
on-

nd-
a list
e

Introduction

A CyberBeanie is a furry ball about three inches across. The CyberBeanie’s key feature is
each one forms a “friendship” with another CyberBeanie. A pair of friendly CyberBeanies re
each others’ simulated “emotions,” meaning that if one is heated up in the palm of a hand, an
on the other turns on in response.

Each CyberBeanie has a very fast embedded microprocessor. The memory available to ea
CyberBeanie is limited to 256 Bytes, and each CyberBeanie has a radio transmitter which
communicate at 1000 bits per second over a distance of four feet. By cleverly using spread
trum technology, interference is avoided and simultaneous transmissions are correctly receiv
all CyberBeanies in range.

The manufacturer preprograms a unique 32 bit identification number into each CyberBean
which serves as a network identifier. Each CyberBeanie generates 16 bit temperature read
which are used by its friend to determine how often to flash its light. If a CyberBeanie is wit
four feet of its friend, they communicate directly. If there is a path for temperature message
travel indirectly through intermediary CyberBeanies, the friends can still communicate even
they are more than four feet apart. To act as routers for each other, CyberBeanies come eq
with a network layer packet forwarding protocol.

The most common use of CyberBeanies is estimated to be in a square classroom with 25 stu
Hence, the CyberBeanie packet forwarding protocol in this paper was configured for a scena
25 CyberBeanies arranged in a grid. CyberBeanies can talk to only their immediate neighb
and the CyberBeanies on diagonals are not close enough to receive transmissions.

This paper describes the CyberBeanie packet forwarding protocol. A high level description i
sented to give the reader an general overview of the design. Then the specific packet forma
network layer pseudo code are presented with detailed descriptions of their purpose and fun
Then, a detailed analysis and justification of design decisions is presented, followed by a c
sion and suggestions on future work.

Design

The CyberBeanie packet forwarding protocol consists of two packet types. First, each Cyb
Beanie advertises its position in the network to its friend using Find Friend packets. When C
Beanies receive Find Friend packets not from their friends, they add their own ID to the end o
Find Friend packet, and send out the packet again. Hence, each Find Friend packet contain
tory of all CyberBeanies it has encountered, and therefore a possible route through the net
back to the sender. Each CyberBeanie also listens for Find Friend packets that originated a
friend. When a packet addressed from its friend arrives, the CyberBeanie saves the route c
tained in the packet and uses that route to send temperature messages to its friend.

Unchecked, blind forwarding of Find Friend packets would soon clog the available radio ba
width with multiple copies of the same Find Friend message. Therefore, CyberBeanie’s keep
of recently seen source IDs for Find Friend packets and drop any new packets with the sam
source ID.
Andrew Lamb 2 3/22/2001

. Each
to its
self, it
f the

yber-
efore
te will

 its
it has

s its

riend.
rough
ture
ses by
Once a CyberBeanie has a route to its friend, it sends the friend Friend Temperature packets
Friend Temperature packet contains all of the routing information necessary to be delivered
recipient. When a CyberBeanie receives a Friend Temperature which is not addressed to it
uses the route information contained in the packet to figure out how to handle the packet. I
current CyberBeanie is the current node on the route it forwards the packet on to the next C
Beanie. If the receiving CyberBeanie is not the next node on the route, it drops the packet. B
resending the packet, the packet’s current node is updated. Only the current node on the rou
ever transmit the packet, conserving network bandwidth.

Find Friend Packet
Figure 1: Find Friend packet layout

The Find Friend packet is broadcast when a CyberBeanie needs to advertise its position to
friend. Every station remembers the IDs of the sources of the last seven Find Friend packets
received. Every time the Find Friend packet is retransmitted, the transmitting node append
own ID to the packet, causing the packet’s length to grow by 32 bits

Friend Temperature Packet
Figure 2: Friend Temperature packet layout

The Friend Temperature packet delivers 16 bit temperature data from a CyberBeanie to its f
The Friend Temperature packets each contain a sequence of IDs that represents a route th
the CyberBeanie mesh network. As each node on the path retransmits the Friend Tempera
message, the node removes its ID from the packet’s path. Hence, the packet’s size decrea
the 32 bits.

Global Variables
Figure 3: Pseudo code defining global variables

// Global variables

Word myID; // This CyberBeanie’s unique 32 bit ID
Word friendID; // Friend’s 32 bit ID

Find Friend

type SourceID

1 32

Node 1 Node 2 (...) Node N

32 32 32

Total size of the Find Friend packet = 1 + 32*(N + 1)
where N = the number of nodes that this packet has been forwarded by)

Friend Temerature

type friendID
(destination)

1 16

Node 1 Node 2 (...) Node N

32 32 32

Total size of a Friend Temperature packet = 17 + 32*(N + 1)
where N = the number of nodes that this packet must be forwarded through))

Data

32
Andrew Lamb 3 3/22/2001

 grid
 fol-
Byte wait_count; // the number of attempted temperature messages
 // without a route before sending out another
 // Find Friend packet

Byte message_count; // The number of temperature messages that the
 // CyberBeanie will send without getting messages from
 // its friend.

Byte route_length; // size of route to friend (necessary to copy route)
Byte most_recently_seen; // memory space to store the index of the most
 // recently seen find friend packet (needed to implement
 // the most recently seen functions called upon in the
 // rest of the code

Word recently_seen[7] // the seven most recently seen find friend ids

Word friend_route[10]; // route to friend

Word buffer[11]; // buffer to assemble network packets in

The global variables in Figure 3 represent the memory allocation scheme for the five by five
of CyberBeanies described in the introduction. These global variables are referenced in the
lowing pseudo code using the prefixglobal to differentiate them from local variables.

Memory Allocation
Figure 4: Memory Allocation for each CyberBeanie

myID (1 Word)

0 8 16 24

friendID (1 Word)

global Variables(4) (1 Word)

local Variables(4) (1 Word)

FF Routes Recently Seen
(7 Words)

Total memory size = 32 words

Buffer Assembly Space
(11 Words)

Route to Friend
(10 Words)

32 Words total

(1 Word)

+

(1 Byte)

Legend

1 Word = 4 Bytes
Andrew Lamb 4 3/22/2001

ting
for
 The

ve
ed.

sizes
ssion

ction
e con-
The CyberBeanie contains 256 Bytes of random access memory (RAM) for use by the rou
protocol. This memory is logically divided up into 32 32 bit Words. The first Word is reserved
the CyberBeanie’s own ID. The second Word is reserved for the CyberBeanie’s friend’s ID.
third Word is allocated into 4 Bytes which hold the global variableswait_count , message_count ,
route_length , andmost_recently_seen . The fourth Word is set aside for local variables and
remembering buffer lengths. 7 Words are allocated for IDs on Find Friend packets which ha
been recently received. 11 Words are allocated for buffer space in which packets are modifi
The final 10 Words are allocated for storing a route to the CyberBeanie’s friend. The specific
of the global variables were determined by the hardware limitations as described in the Discu
section below.

Global Constants
Figure 5: Global constants for network layer

// Constants programmed into the CyberBeanie’s at the factory

// first bit of each message is the type field
#define TYPE_FRIEND_FIND = 0;
#define TYPE_FRIEND_TEMP = 1;

#define MAX_WAIT_COUNT = 3; // number of network requests without a
 // route before we send another FF packet
#define MAX_MESSAGE_COUNT = 3; // number of messages to send without
 // recieving any messages from friend before
 // assuming route is bad
#define MAX_PACKET_SIZE = 11; // that is how much buffer space we have for
 //assembling packets, so this is
 //the maximum buffer space allowable

#define MAX_TIME_IN_RECENTLY_SEEN = 1160; // how often we clear the
 // recently seen buffer in milliseconds
#define TEMPERATURE_INTERVAL = 776;// the interval, in milliseconds, between
 // link_send requests. The larger this number,
 // the more Friend Temp messages are sent,
 //and the more bandwidth they consume.

The global constants in Figure 5 are programmed into each CyberBeanie’s read only instru
memory at the factory and can not be changed. The specific values that are assigned to th
stants were determined by the radio link speed and the most likely scenario.

Network initialization code
Figure 6: Pseudo code for initialize_network()

// Code to initialize the network

void network_initialize(my_id, my_friend_id) {
 // initialize global variables
 globals.myID = my_id;
 globals.friendID = my_friend_id;
 globals.wait_count = 0;
 globals.message_count = 0;
 globals.route_length = 0; // no route to start with
 globals.recently_seen

 // send initial Find Friend packet
 network_sendFF();

 // set up a timer that removes all IDs from the recently seen
 // list of Find Friend packets forwarded. This is done
Andrew Lamb 5 3/22/2001

vari-
s a

been
 // so that if the network changes configuration after initial
 // stabilization, the CyberBeanies will respond to find friend broadcasts
 set_timer(MAX_TIME_IN_RECENTLY_SEEN) {
 if (globals.recently_seen.updated) {
 globals.recently_seen.clear_list();
 } else {
 globals.recently_seen.updated = false;
 }
}

The initialization code for the CyberBeanie packet forwarding protocol initializes the global
ables and sends an initial Find Friend message into the network. The initialization code set
timer that will go off every MAX_TIME_IN_RECENTLY_SEEN milliseconds which will clear
the global list of recently seen Find Friend packet source IDs no Find Friend packets have
seen recently.

Network layer transport code
Figure 7: Pseudo code for sending packets

// Code to send data over the CyberBeanie network

// temp_data is a 16 bit value specifying the CyberBeanie’s
// current temperature that needs to be sent to the
// CyberBeanie’s friend

void net_send(temp_data) {
 // if we have a route to our friend, send the temp to the friend
 if (global.route.length > 0) {
 // assemble the packet for transmission
 global.buffer.type = TYPE_FINDFRIEND;
 global.buffer.temperature = temp_data;

 // copy the route to our friend into the message buffer
 global.buffer.route = global.friend_route;

 // send the packet (link_send’s length is in number of bits)
 // 1 bit for type
 // 16 bits for temperature data
 // 32 bits for each id on our node
 link_send(global.buffer, 1 + 16 + global.route_length * 32);

 // increment the global message count so we can
 // detect a change in the network configuration
 global.message_count++;

 } else {
 // else, we don’t have a route to our friend yet
 // increment the message wait counter so we give the
 // Find Friend packets time to find our friend
 global.wait_count++;

 // if we have waited long enough without hearing from our
 // friend, try resending a Find Friend message
 if (global.wait_count > MAX_WAIT_COUNT) {
 // send a Find Friend message and reset the wait count
 network_sendFF();
 global.wait_count = 0; // reset the timer
 }
 }

 // if we have sent several temperature messages without getting
 // any temperature messages from our friend, assume that the
Andrew Lamb 6 3/22/2001

 for-

to
to its
time
s one

ger
ping a
 receiv-
 a prede-
gins
 // route we have is no longer valid, so we clear the routing
 // information that we have.
 if (global.message_count > MAX_MESSAGE_COUNT) {
 global.route_length = 0; // clear the route
 global.wait_count = 0; // reset the message wait count
 network_sendFF(); // send an initial Find Friend message
 }

 return;
}

(Note: The mechanics for setting the correct bits in the buffer is not important to the packet
warding protocol. Memory was allocated for this task, and references such asglo-

bals.buffer.type refer to the type field of the global buffer.) If the CyberBeanie knows a route
its friend, it sends out a Friend Temperature packet. If the CyberBeanie doesn’t know a route
friend, it checks to see how long ago it last broadcast its own position. If a suitable amount of
has elapsed, the CyberBeanie sends another Find Friend packet assuming that its previou
was lost.

If the network has changed configurations and the CyberBeanie’s path to its friend is no lon
valid, a new route must be determined. A network configuration change is detected by kee
count of the number of Friend Temperature packets that the CyberBeanie has sent without
ing any Friend Temperature messages in reply. If the unanswered message count reaches
termined threshold, the currently held route is invalidated and the route discovery phase be
again with the broadcast of a Find Friend packet.

Figure 8 shows pseudo code to assemble and broadcast a Find Friend packet.

Figure 8: Pseudo code for sending a Find Friend packet
// Code to send a Find Friend packet
void network_sendFF() {
 // assemble a Find Friend packet
 global.buffer.type = TYPE_FRIEND_FIND;

 // append this CyberBeanie’s ID so other CyberBeanies
 // know who originally send the message
 global.buffer.source = global.myID;

 // 1 bit for type
 // 32 bits for the one ID
 link_send(global.buffer, 1 + 32 * 1); // broadcast our whereabouts
}

Network layer delivery code
Figure 9: Pseudo code for handling incoming packets

// network layer packet handler

void net_deliver(linkBuffer, size) {

 // if we are dealing with a Friend Temp message
 if (linkBuffer.type == TYPE_FRIEND_TEMP) {
 if (linkBuffer.destination = global.myID) {
 // this message is for us, so deliver it to the application layer
 handle_temperature(linkBuffer.temperature);

 // make note of the fact that we got a friend’s message by
Andrew Lamb 7 3/22/2001

 Cyber-
d mes-

s the
the

n the
 // resetting the unanswered message count to zero thus
 // preventing the route from being discarded
 globals.message_count = 0;

 } else if (linkBuffer.route.currentNode == global.myID) {
 // we are the current node in the route specified by the packet
 // so resend our packet without our node id to the next node
 link_send(linkBuffer, linkBuffer.size - 32); // chop off last ID (ours)

 } else {
 // this packet was not for us, nor are we the current node in the
 // route so discard packet (eg do nothing)
 }

 // Otherwise, we are dealing with a broadcast Find Friend message,
 // which we need to route appropriately
 } else if (linkBuffer.type == TYPE_FRIEND_FIND) {

 // if this packet is from our friend, update out routing information
 if (linkBuffer[1] == global.friendID) {

 // if this is a better route than the one we currently know about
 if ((linkBuffer.size - 1) < global.route_length) {
global.friend_route = linkBuffer.route; // copy route in packet for friend route
global.route_length = linkBuffer.route.length; // update route length
 } else {
// the route advertised is not as good as our current one, so
// do nothing and drop the packet
 }

 } else if (recently_seen.contains(linkBuffer.source)) {
 // else, if we have seen the source of this packet recently, drop packet

 } else if (size < MAX_PACKET_SIZE) {
 // else if our memory allows this packet to be processed
 global.buffer = linkBuffer; // copy the received message(with its route)

 // tack our ID on to the end of the packet and send it on its way
 global.buffer.route += global.myID;
 link_send(global.buffer, linkBuffer.size + 32);

 // make a note that we have seen this particular
 // find friend message so we don’t propagate duplicates
 globals.recently_seen.add(linkBuffer.source);

 } else {
 // there was no room to assemble a new packet in our buffer,
 // so we are forced to drop this packet
 }
 }

}

If the link buffer contains a Friend Temperature message that is addressed to the receiving
Beanie, net_deliver hands the temperature data up to the application layer. The unanswere
sage counter is then reset. Otherwise, the Friend Temperature was not destined for this
CyberBeanie, so the routing information in the packet is examined. If the CyberBeanie’s ID i
ID of the current node in the path specified in the packet, then the current ID is removed from
packet’s path, and the packet is retransmitted. If the CyberBeanie was not the next node o
path, the packet is ignored.
Andrew Lamb 8 3/22/2001

ur-
d,
If the
source
nd

ilable
the
es-
s. Fur-
ions

ce it

ecause
dify
riend-
s a
t is a
nd as

g the
f the

plicity.
 mem-
nefit

Find
mance
nies is

hoose
and-
ited
xity
If the link buffer contains a Find Friend message that is from the CyberBeanie’s friend, the
packet’s route is examined. If the route is shorter than the one that is currently stored, the c
rently stored route is replaced. If the Find Friend packet is not from the CyberBeanie’s frien
then its source is compared to a list of source IDs from recently seen Find Friend packets.
source of the Find Friend packet has been recently seen, then the packet is discarded. If the
hasn’t been recently seen, then the CyberBeanie appends its own ID number to the route a
retransmits the packet after adding the packet’s source ID to the list of recently seen IDs.

Discussion

The implementation of the CyberBeanie packet forwarding protocol was guided by the ava
hardware. The most severe limitations on the CyberBeanie packet forwarding protocol are
paucity of available memory and the slow radio link. The CyberBeanie’s very fast microproc
sor, on the other hand, can be used to offset the disadvantages of the memory and radio link
thermore, the specific use of this routing protocol for interaction among toys allows optimizat
that would not be permissible for other more general purpose routing protocols.

Design Rationale
Simplicity was a major design goal. The simpler a system is, typically the better performan
has and the less error prone it is.

Initially, a routing scheme based on routing tables was considered, but was then discarded b
of insufficient memory. Instead, the speed of the processor was utilized to process and mo
incoming packets before retransmission. Further simplification was obtained because the f
ships between CyberBeanies are symmetric. Since the CyberBeanie’s end layer interface i
flashing light, it is unnecessary to guarantee every single packet arrives at its destination. I
natural choice to use any Friend Temperature message originating from a CyberBeanie’s frie
an acknowledgement that the CyberBeanie’s own packets are getting through. By removin
notion of acknowledgement packets from the CyberBeanie packet forwarding protocol, half o
potential packet traffic was eliminated.

Remembering recently seen Find Friend messages seems opposed the stated goal for sim
Keeping a recently seen list adds complexity to the overall routing system, consumes more
ory and therefore makes for shorter maximum route lengths. However, the performance be
realized by not wasting bandwidth with duplicating packets more than justifies the costs of
remembering recently seen IDs.

An alternate approach which was considered for reducing packet duplication was discarding
Friend packets that the receiving CyberBeanie had already seen. Figure 10 shows the perfor
of the alternate approach on the left. The approach of remembering recently seen CyberBea
shown on the right. While the alternate approach does allow the receiving CyberBeanie to c
from more paths through the CyberBeanie mesh, it consumes a huge amount of network b
width because Find Friend packets grow in size after each retransmission. The severely lim
bandwidth of the available radio link makes removing duplicates worth the additional comple
of remembering source IDs from recently seen Find Friend packets.
Andrew Lamb 9 3/22/2001

hrough
e larg-

ckets
mber
nt at 4
f

uting a
 the

nies
eed
mines
below
erage
e two

is 8
pack-
e loca-
ill not
Figure 10: Initial Find Friend propagation with and without recently seen

Scalability
The route storage needs to be N Words, where N is the largest allowable number of hops t
the network. The buffer space needs to be N Words + 17 bits in order that type, data and th
est permissible route can be created in the buffer to send. The number of recently seen pa
also needs to be roughly N (though N/2 would work as well) in order to accommodate the nu
of expected Unique IDs. The space allocated for global and local variables remains consta
Words. Hence, the amount of memory utilized by this design as a function of the number o
CyberBeanies is on the order of 3N.

Memory usage scales well in this design because most of the information necessary for ro
particular packet is stored inside the packet during transmission. The network bandwidth is
limiting factor when scaling this system.

Initialization
The CyberBeanie packet forwarding protocol is said to be stable when all of the CyberBea
have routes to their friends and are broadcasting temperature data happily. The network sp
directly determines the speed at which a mesh of CyberBeanies stabilizes because it deter
the speed at which Find Friend packets can propagate across the network. The calculations
are based on the five by five grid scenario described in the introduction. To determine the av
setup time of the CyberBeanie network, consider the individual worst case scenario where th
friends are located at opposite corers of the five by five grid

By tracing out the message propagation paths (see Figure 11), the maximum route length
nodes, with a propagation time of approximately 1160 mS. The total number of Find Friend
ets caused by a particular initial broadcast is the same regardless of the two friend’s relativ
tions. Most Find Friend packets will not start at the edges, and hence their retransmissions w

1 hops
2 hops
3 hops
4 hops

Recently
Seen

Packet

Time

Initial Message propagation without recently seen filtering

2 2

2

2

2 2

2

2

2 2

2

2

2 2

2

2

23

2

3

Initial Message propagation without recently seen filtering

1 hops
2 hops
3 hops
4 hops

Recently
Seen

Packet

Time

Numbers indicate the number of copies
of the Find Friend message

that are transmitted over a particular
link

2

3

2323

2 3

2

3

2

3

Note: Nodes don’t forward packets packtes whose
routes already include that node
Andrew Lamb 10 3/22/2001

maller,
he

sce-
t can
rk

e, the

c

al
(hope-

y will
n be
change
consume as much bandwidth because fewer nodes will be visited. Since the hop count is s
the average packet size which grows linearly with the number of hops will be smaller, and t
total network bandwidth consumed will also be smaller.

12302 bits of the total bandwidth of the network are required for all packets in the worst case
nario presented in Figure 11. The total network bandwidth equals the total number of bits tha
be sent per second over the entire network. In the five by five grid scenario, the total netwo
bandwidth is

25 CyberBeanies x 1000 bits/sec/CyberBeanie = 25,000 bits/sec

Using the total network bandwidth and the worst case cost of sending a Find Friend messag
average time taken to initialize the network is approximately

25 CyberBeanies x 3736 bits/initialization/CyberBeanie x 1/25,000 secs/bit = 3.736 se

This is only approximate because it does not account for potential bottle necks at the centr
CyberBeanies. On the other hand, since it assumes the worst case, the approximations will
fully) partially offset each other.

Figure 11: Worst case initial Find Friend message propagation

Interactivity
The faster each CyberBeanie sends its friend temperature data, the more interactive the to
be. The physical constraints of the network, impose limitations on the rate at which data ca
exchanged. By examining the worst case Friend Temperature message propagation, the ex
rate for the five by five grid can be computed.

33
65
97

129

Recently
Seen

33 mS

Size of packet

Worst case initial propagation delay of initial Find Friend packet. The source
CyberBeanie is in the upper left, and its friend is in the lower right

161
193
225

65 mS + 33 mS = 98 mS 97 mS + 98 mS = 195 mS

193 mS + 485 mS = 678 mS225 mS + 678 mS = 903 mS

129 mS + 195 mS = 324 mS

161 mS + 324 mS = 485 mS257 mS + 903 mS = 1160 mS
(total propagation delay)

257

Time

Friend Reached!

Total bits sent

1 x 33 33
+

3 x 225 675
4 x 193 772
5 x 161 805
4 x 129 516
3 x 97 291
2 x 65 130

2 x 257 514

 3736
 bits sent
Andrew Lamb 11 3/22/2001

nds to
worst

 in the
any
n-
neces-
, but
ntial

e for
eat
of its
e will
e, is
Figure 12 illustrates that the worst case Friend Temperature message takes 1288 milliseco
reach the specified friend, at an expense of 1288 bits of total network bandwidth. Using the
case message scenario the network will support

1/1,288 message/bits x 25,000 bits/sec = 19.4 messages/sec

implying that each CyberBeanie can send out Friend Temperature messages every

1/25 1/CyberBeanie messages x 19.4 messages/sec = 0.776 sec = 776 mS

These calculations do not take into account the potential bottle necks of the CyberBeanies
middle of the mesh. CyberBeanies route messages along the shortest known path without
regard for the current traffic load of the center CyberBeanies. The amount of bandwidth co
sumed by a particular Friend Temperature message is proportional to the number of hops
sary to reach the friend. It is unlikely that all paths will go through the middle CyberBeanies
it is also unlikely that all paths will be the worst case. The worst case bandwidth and the pote
bottlenecks partially cancel each other out.

Figure 12: Worst Case Friend Temperature message propagation

Support for intended application
The algorithms of the CyberBeanie packet forwarding protocol are general, and are suitabl
configurations other than the five by five grid. In the setting of 25 school children sitting in n
rows, the performance of the network is good. Each CyberBeanie can expect to be informed
friend’s temperature every 776 milliseconds. To the end user, a 776 millisecond response tim
make the CyberBeanies very interactive. The initial setup time of 3736 mS, while noticeabl
reasonable.

241 mS + 273 mS = 514 mS

49
81

113
145

Message
source

273 mS

Size of packet

177
209
241
273

Message
destination

Message
path

Total bits sent

1 x 49 49
+

1 x 241 241
1 x 209 209
1 x 177 1 77
1 x 145 145
1 x 113 113
1 x 81 81

1 x 273 273

 1288
 bits sent

209 mS + 514 mS = 723 mS 177 mS + 723 mS = 900 mS

145 mS + 900 mS = 1045 mS113 mS + 1045 mS = 1158 mS81 mS + 1158 mS = 1239 mS49 mS + 1239 mS = 1288 mS
(total propagaion delay)

Friend Reached!
Andrew Lamb 12 3/22/2001

akes
al mil-
ds

neces-
and

 for-
educ-
r.
n ID
ell.

s
s them
radio
devia-

tem-
e
nding
se prop-
w for
ated
 mS

en
ts
ind

ased
ll

tween

 good
ork
hance
The CyberBeanie protocol will take 4393 milliseconds to react to changes in the network. It t
3 * 776 milliseconds to notice that no friend messages have arrived, and then 1288 addition
liseconds to receive a new Find Friend packet from its it friend. It then takes 776 millisecon
longer for the first Friend Temperature to arrive.

If less stringent requirements were placed on system, such as only 100 unique ID numbers (
sitating only 7 bits to store an ID, and an allowable 20 second stabilization time, both memory
radio link bandwidth could be decreased. Memory consumption of the CyberBeanie packet
warding protocol is directly proportional to the size of the unique IDs required, and hence r
ing the ID size by a factor of four would reduce the memory consumption by a factor of fou
Because IDs make up the largest portion of transmitted packets, a factor of four reduction i
size would result in a factor of four decrease in the necessary speed of the radio links as w

Factory Programmed Constants
To determine the global constants for WAIT_COUNT, MESSAGE_COUNT, and
MAX_TIME_IN_RECENTLY_SEEN in the five by five grid, the worst case propagation time
were used. Using the worst case makes the CyberBeanies slightly less interactive as it take
longer to notice a change in network topology and it potentially under utilizes the available
link’s bandwidth. However, using worst case times makes the CyberBeanies more robust to
tions from the five by five grid topology.

WAIT_COUNT determines the number of times a friendless CyberBeanie attempts to send a
perature before it launches another Find Friend packet. Propagating a Find Friend messag
through the CyberBeanie mesh network consumes a large amount of bandwidth, so not se
redundant messages boosts performance. A CyberBeanie should wait at least the worst ca
agation time(1160 milliseconds) of a Find Friend packet before sending another one. To allo
network congestion, and to make absolutely sure that the Find Friend message has propag
through the network, WAIT_COUNT is set to 3 inter temperature times for a total of 3 x 776
= 2328 mS between Find Friend packets.

MESSAGE_COUNT is the number of temperature packets that are sent to a friend without
receiving acknowledging temperature packets. When MESSAGE_COUNT packets have be
sent, the current route is invalidated. If MESSAGE_COUNT is set too low, a few lost packe
might cause the CyberBeanie to discard good route information and rebroadcast a costly F
Friend packet. If MESSAGE_COUNT is set too high, a CyberBeanie’s interactivity is decre
because it takes longer to realize that the network configuration has changed. Allowing 3 fu
worst case message propagation times(2 x 1,288mS = 2,576mS) strikes a compromise be
these two trade-offs.

MAX_TIME_IN_RECENTLY_SEEN is the number of milliseconds of not seeing any Find
Friend packets before a CyberBeanie discards its table of recently seen Find Friend IDs. A
choice is the time that a worst case Find Friend packet takes to propagate through the netw
(1160 mS). If no Find Friend packets have not been observed in this time, there is a good c
that the network topology has stabilized.
Andrew Lamb 13 3/22/2001

r its
have
n
ional
anie
 this
rmed
lcula-

 is not
 linear
s dis-
ckets
re
Conclusion

The CyberBeanie packet forwarding protocol described in this paper offers good support fo
intended application. As with all designs, the CyberBeanie packet forwarding protocol does
limitations. The most severe limitation is the maximum hop count. It would be wonderful if a
arbitrary number of hops was allowed, which is a promising area of future research. An addit
limitation is potential bottlenecks within the system. If all of the shortest paths in a CyberBe
mesh network happen to go through one particular CyberBeanie, the analysis presented in
paper is totally invalidated. Without any data about how the CyberBeanie friendships are fo
or their spatial distribution, considerations about bottlenecks could not be included in the ca
tions. The linear scaling of resources used by the CyberBeanie packet forwarding protocol
ideal, but it is not unreasonable given the severe limitations imposed by the hardware. The
increase in network bandwidth as the maximum hop count grows is much more worrying. A
tributed mesh networks become increasingly more common, protocols to effectively route pa
among peers without linearly scaling bandwidth requirements will become increasingly mo
important.

Bibliography

Jerome H. Saltzer and M. Frans Kaashoek,Topics in the Engineering of Computer Systems
(working title). Cambridge, MA: MIT Laboratory for Computer Science, 2001.

I spoke briefly with both Kailas Narendran and Winnie Yang about this design project
Andrew Lamb 14 3/22/2001

	Interactive Toy Routing: The CyberBeanie Packet Forwarding Protocol.
	Abstract
	Introduction
	Design
	Find Friend Packet
	Figure 1: Find Friend packet layout

	Friend Temperature Packet
	Figure 2: Friend Temperature packet layout

	Global Variables
	Figure 3: Pseudo code defining global variables

	Memory Allocation
	Figure 4: Memory Allocation for each CyberBeanie

	Global Constants
	Figure 5: Global constants for network layer

	Network initialization code
	Figure 6: Pseudo code for initialize_network()

	Network layer transport code
	Figure 7: Pseudo code for sending packets
	Figure 8: Pseudo code for sending a Find Friend packet

	Network layer delivery code
	Figure 9: Pseudo code for handling incoming packets

	Discussion
	Design Rationale
	Figure 10: Initial Find Friend propagation with and without recently seen

	Scalability
	Initialization
	Figure 11: Worst case initial Find Friend message propagation

	Interactivity
	Figure 12: Worst Case Friend Temperature message propagation

	Support for intended application
	Factory Programmed Constants

	Conclusion
	Bibliography

